AN AREA-EFFICIENT PARTIALLY RECONFIGURABLE CROSSBAR SWITCH WITH LOW RECONFIGURATION DELAY

Hoo Chin Hau and Akash Kumar
MOTIVATION

- Multiprocessors on the rise (MPSoCs)
 - Single processor systems unavailable to meet application performance requirements
 - Multiple processors + Memory + IO devices
 - Bottleneck shifts from computation to communication
- Networks-on-Chip (NoCs) proposed
 - Bus is not scalable
MOTIVATION

- MPSoCs need to handle multiple use cases – combinations of multiple applications
- Use cases have different connectivity requirements
- NoCs have to be dynamically reconfigurable and provide guaranteed throughput: TDM vs SDM
TDM vs SDM

TDM

Node 1

Node 2

CCBA

SDM

Node 1

Node 2

A
B
C
MOTIVATION

- Two approaches to dynamic reconfiguration of NoC
 - Adding reconfiguration logic
 - Incurs area overhead
 - Partial reconfiguration (PR)
 - High reconfiguration delay
 - Requires large storage space
 - Caters to predefined use cases only
CONTRIBUTIONS

- Problem lies with the design of crossbar switch
- A novel partially reconfigurable crossbar switch design is proposed
 - 84% area saving!
 - 78% reconfiguration delay reduction!
 - Runtime bit-stream generation
 - Glitch-free reconfiguration
CROSSBAR SWITCH ARCHITECTURE
MULTIPLEXER AS BUILDING BLOCK OF CROSSBAR SWITCH
A Configurable Logic Block (CLB)
LUT AS MULTIPLEXER

- Conventional LUT multiplexer
 - Requires $\log_2 N$ selector pins for N data inputs

- PR based LUT multiplexer
 - Requires no dedicated selector pins
 - Selection is done by changing LUT content through PR
 - Allows larger multiplexer to be built with the same number of LUTs
LUT AS MULTIPLEXER

|\begin{array}{c|c|c}
|0 & 0 & 0 \\
|0 & 0 & 0 \\
|1 & 1 & 1 \\
|1 & 1 & 1 \\
\end{array}|
SCALABLE APPROACH

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of logic gate]
DESIGN FLOW

Network specification in HDL

System specification in HDL

Logic synthesis

Placement and routing

Bitstream generation

Placement constraints
RUNTIME BITSTREAM GENERATION & RECONFIGURATION

LUT configuration database

ICAP

14
MINIMIZING RECONFIGURATION DELAY

- Apply AREA_GROUP constraint to limit the placement of LUT to the minimum number of CLB columns required
- Identify the frames that are responsible for LUT content
 - 8 out of 36 frames are required
 - 78% speedup!
- Use the Multiple Frame Write (MFW) command of ICAP
Multiple Frame Write (MFW)

2 LUTs configured *identically* by transferring the configuration data only *once*!
GLITCH-FREE CONNECTION ESTABLISHMENT

Configuration of first router is unchanged

Operation of first router is unaffected
RESULTS AND ANALYSIS
Area saving of PR router – single link

![Graph showing area saving comparison between conventional and PR based multiplexers.]
Area savings of PR router

![Graph showing area savings comparison between Non-PR and PR routers. The graph displays the area (in terms of number of LUTs) for each router type, with a breakdown between routing logic and control logic.]
AREA REQUIREMENT OF VARIOUS NETWORK TOPOLOGIES

![Graph showing area requirement of various network topologies](image-url)
CONCLUSIONS

A novel partially reconfigurable crossbar switch design has been presented

- 84% area saving!
- 78% reconfiguration delay reduction!
- Runtime bitstream generation
- Glitch-free reconfiguration
QUESTIONS?