AN AREA-EFFICIENT PARTIALLY RECONFIGURABLE CROSSBAR SWITCH WITH LOW RECONFIGURATION DELAY

Hoo Chin Hau and Akash Kumar

MOTIVATION

• Multiprocessors on the rise (MPSoCs)

- Single processor systems unavailable to meet application performance requirements
- Multiple processors + Memory + IO devices
- Bottleneck shifts from computation to communication
- Networks-on-Chip (NoCs) proposed
 - Bus is not scalable

MOTIVATION

- MPSoCs need to handle multiple use cases – combinations of multiple applications
- Use cases have different connectivity requirements
- NoCs have to be dynamically reconfigurable and provide guaranteed throughput: TDM vs SDM

MOTIVATION

Two approaches to dynamic reconfiguration of NoC

- Adding reconfiguration logic
 Incurs area overhead
- Partial reconfiguration (PR)
 High reconfiguration delay
 Requires large storage space
 Caters to predefined use cases only

CONTRIBUTIONS

- Problem lies with the design of crossbar switch
- A novel partially reconfigurable crossbar switch design is proposed
 - 84% area saving!
 - 78% reconfiguration delay reduction!
 - Runtime bit-stream generation
 - Glitch-free reconfiguration

CROSSBAR SWITCH ARCHITECTURE

MULTIPLEXER AS BUILDING BLOCK OF CROSSBAR SWITCH

A CONFIGURABLE LOGIC BLOCK (CLB)

LUT AS MULTIPLEXER

•Conventional LUT multiplexer

Requires log2N selector pins for N data inputs

• PR based LUT multiplexer

- Requires no dedicated selector pins
- Selection is done by changing LUT content through PR
- Allows larger multiplexer to be built with the same number of LUTs

LUT AS MULTIPLEXER

SCALABLE APPROACH

0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

DESIGN FLOW

RUNTIME BITSTREAM GENERATION & RECONFIGURATION

ICAP

MINIMIZING RECONFIGURATION DELAY

 Apply AREA_GROUP constraint to limit the placement of LUT to the minimum number of CLB columns required

 Identify the frames that are responsible for LUT content

- 8 out of 36 frames are required
- 78% speedup!

Use the Multiple Frame Write (MFW) command of ICAP

MULTIPLE FRAME WRITE (MFW)

GLITCH-FREE CONNECTION ESTABLISHMENT

RESULTS AND ANALYSIS

AREA SAVING OF PR ROUTER - SINGLE LINK

AREA REQUIREMENT OF VARIOUS NETWORK TOPOLOGIES

CONCLUSIONS

 A novel partially reconfigurable crossbar switch design has been presented

- 84% area saving!
- 78% reconfiguration delay reduction!
- Runtime bitstream generation
- Glitch-free reconfiguration

QUESTIONS?