An Acceleration of a Graph Cut
Segmentation With FPGA

Daichi Kobori and Tsutomu Maruyama
University of Tsukuba

L
What Is Graph Cut Segmentation?

- Graph cut is one of the segmentation methods based on
energy minimization, and graph cut based segmentation
IS widely used.

- The following images are examples of segmentation [*].

- The seed pixels (target objects or background) are given
by the user, and then only the target objects are extracted.

Input image with seeds Output image

[*] Tomoyuki Nagahashi, Hironobu Fujiyoshi, and Takeo Kanade, “Image
Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing,” in
ACCV 2007, Part Il, LNCS 4844, pp. 806--816, 2007.

Background

- For calculating the graph cut, max-flow algorithm is widely
used, but it requires long computation time.

- We need an acceleration by FPGA or GPU for real-time
processing of the max-flow algorithm.
- The performance of a GPU (GeForce GTX280) system [7]

IS 25 graph cuts per second on 640 x 480 pixel images,
which is about 5 times faster than CPU.

[7] V. Vineet and P. J. Narayanan, “Cudacuts: Fast graph cuts on the gpu,”
in CVPR Workshop on Visual Computer Vision on GPUs, 2008.

Segmentation Procedure

- Seed pixels (on objects or background) are specified by
the user.

- A weighted directed graph among the pixels in the image
IS generated based on the seed pixels.

- A min-cut of the weighted directed graph is calculated
using max-flow algorithm.

A Graph

- G = (V,E) : aweighted directed graph

V Is a set of vertices (pixels), and it includes two special
nodes, s and t.

E Is a set of edges between two vertices, and each edge
has a non-negative capacity c(u, v).

L
A Graph

- G = (V,E) : aweighted directed graph

V is a set of vertices (pixels), and it includes two special
nodes, s and t.

A Graph

- G = (V,E) : aweighted directed graph

V is a set of vertices (pixels), and it includes two special
nodes, s and t.

E Is a set of edges between two vertices, and each edge
has a non-negative capacity c(u, v).

L
Cut of a Graph

- A cut of the graph shows the division of V' into two groups;
SandT.

- The capacity of the cut ¢(§5,T) Is defined as the capacity
of the edges from Sto T.

« The cut which minimizes ¢(S,T) Is called min-cut.

c(S,T) =12+ 14 = 26

Cut of a Graph

- A cut of the graph shows the division of IV into two groups;
SandT.

- The capacity of the cut ¢(S,T) is defined as the capacity
of the edges from Sto T.

14\
c(S,T) =12 + 14 = 26

Cut of a Graph

- A cut of the graph shows the division of IV into two groups;
SandT.

- The capacity of the cut ¢(S,T) is defined as the capacity
of the edges from Sto T.

- The cut which minimizes c(S,T) is called min-cut.

c(S,T)=12+7+4 =23

L
Making a Graph (Color)

- The weighted directed graph is generated from the pixels
In the iImage.

Image

L
Making a Graph (Seed)

- Suppose that a black pixel is specified as foreground, and
a white pixel is specified as background.

/ Specified as foreground
[
0 @

— Specified as background

L
Making a Graph (Seed)

- Suppose that a black pixel is specified as foreground, and
a white pixel is specified as background.

- Then, pixels that have similar color to black have strong
connection to s.

/ Specified as foreground

— Specified as background

L
Making a Graph (Seed)

- Suppose that a black pixel is specified as foreground, and
a white pixel is specified as background.

- Then, pixels that have similar color to black have strong
connection to s.

- On the other hand, pixels that have similar color to white
have strong connection to t.

/ Specified as foreground

— Specified as background

L
Making a Graph (Energy)

- Min-cut corresponds to the minimum energy of the
following equation.

EW) =2) Ry(Lp)+) Bygy- 8Ly Ly)
PEV {p.q}€E
- A Is a parameter which controls the affect by the seeds
(the larger the value, the more affect by the seeds).

How to Compute Min-cut

- According to “max-flow min-cut theorem”, min-cut is
obtained from the result of max-flow.

- In order to calculate max-flow, two methods are

commonly used.
1. “augmenting path method” scans the graph to find a path from
source (s) to sink (t).

This method is NOT suitable for hardware implementation.

“push-relabel method” uses only the connection from one vertex
to its neighbors.

This method is suitable for hardware implementation.

Push-relabel Method

- In the push-relabel method, a weighted directed graph is
considered as a flow network.

- We can flow preflow g in each edge if g is smaller than
flow capacity c(u, v).
- All vertices have excess flow
e(u) = gin(uw) — goue(u) = 0.

- Vertex u is active if e(u) > 0.

o ew)=9-7=2 |

, 3 4 Jout (V1)
g n (vl)
Flow network

Residual Network

- The residual capacity of an edge is given by
cr(u,v) = c(u,v) — g(u,v)
which iIs the rest of the capacity that we can flow from u to v.

- By flowing 7 from v, to v,,
cr(vy,v,) =7—-7=0
cr (v v1) =7 = (=7) = 14

43(1}1) =2]

& |

13 4 [e(vz) _ }13

Flow network Residual network

43(771) =2]

20

14

Residual Network

- Using the residual network, we can easily understand how
much more we can flow on the network.

- However, we must store excess flow of each vertex.

43(1}1) =2]

& |

13 v 4 [e(vz) _]13

Flow network Residual network

43(771) =2]

20

14

Operations of Push-relabel Method

- There are two main operations, and they are applied to
the active vertices.
1. Push(u,v)
2. Relabel(u)

- If u Is active, either operation can be applied to u.

L
Push(u, v)

- Applicable condition
- Vertex u is active.
- ¢r(u,v) >0
-h(u)=h()+1
- Operation
- min(e(u), ¢r(u, v)) is flowed from u to v.

- Example
- Preflow 5 is flowed from v; to v,.
- Residual capacity c(v,, v,) is reduced, and c¢f(v,, v,) is increased.

——>

L
Relabel(u)

- Applicable condition

- Vertex u Is active.

- Push(u, v) cannot be applied to vertex u.
- Operation

- h(u) is heightened so that push(u, v) can be applied.
- Example

- Push(v,, v,) can not applied to v, because h(v;) < h(v,).

- h(v,) is heightened more than h(v,) so that push(v,, v,) can be
applied to v;.

10 10

—

Relabel(v,)

Heuristics for the Push-relabel Method

- The computational complexity of the push-relabel method
is O(V2E).

- To reduce the computational complexity, two heuristics
are widely used.

Heuristics for the Push-relabel Method

- The computational complexity of the push-relabel method
is O(V2E).

- To reduce the computational complexity, two heuristics
are widely used.

- “global relabeling” changes h(u) by calculating the
minimum distance from u to t by the breadth first search.
We need to traverse the graph by dereferencing, so it is
NOT suitable for hardware implementation.

Heuristics for the Push-relabel Method

- The computational complexity of the push-relabel method
is O(V2E).

- To reduce the computational complexity, two heuristics
are widely used.

- “global relabeling” changes h(u) by calculating the
minimum distance from u to t by the breadth first search.
We need to traverse the graph by dereferencing, so it is
NOT suitable for hardware implementation.

- “gap relabeling” heightens h(u) to |V| + 1 if u belongs to S.
This method can be implemented using a histogram.

Main Features in Our Approach

- Major operations are “push” and “ralabel”.
- Operations are applied to the active vertices.

- Relabel is applied first if necessary, and then push is
applied.

- AFIFO is used to manage active vertices, because the
order of the processing is arbitrary.

- We can obtain max-flow of the flow network when there
exists no active vertex.

Hardware Implementation

D
Data Format of Each Pixel

- Each vertex u has 10 links (eight neighbors, and s and t).
- Each link has residual capacity c¢(u,*) from u.

- Vertex u also has residual capacity c¢(s, u)
from s to u.

- Excess flow e(u) and height h(u) are required
for each vertex u.

- The total data width is 126b.

e(u) h(u) |cf(u,n0) |cf(unl)| == cf(u,n7)| cf(u,s) cf(u,t) cf(s,u)

13— | >t g— g |3 |3 3

L
A Block Diagram of the Circult

1. The address of an active vertex is popped up from the address

gueue.
2.
3.
4.
5
=l
8 g = |
g g ——] 3 s 23 address |
5= % ER= £ & queue |
.% E‘ 3 'Flo = 3 g
a5 z
= 2.
20
O <
, £
) I o
mecr)rflfog;l %Jank FPGA gap detector

L
A Block Diagram of the Circult

1.

2. The data of the nine pixels are read out from the cache memory.

3.
4.
5
s [Tl |
3 g = .
g g | 3 s 23 address |
== 1 £ B2 o queue
ER 3 5| |58 :
i S oR-=; g
= 2.
‘|‘ I — Tﬁ' -
53
off-chip |)
memory bank FPGA gap detector

L
A Block Diagram of the Circult

1.

3. Relabel operation is applied if necessary, and push operation is
applied in the push-relabel unit.

4.
5
< 1]
g g = |
g g] 3 = 23 address |
o [£ BE o queue
ﬁ — [] ;T = _s % :
i S oR-=; g
o ‘5‘ g =
= 2.
T R
£
off-chip ! =
memory bank FPGA gap detector

L
A Block Diagram of the Circult

1.

4. If new active vertex is generated, put it in the address queue.

R
s — :
g : —— 3 £ 23 address :
= 2 2 .
3 5 B2 o queue
X = 34 L B S5
as &% SE=
L Q-t
T | | i % -
£
off-chip , =
memory bank FPGA gap detector

L
A Block Diagram of the Circult

1.
2.
3.
4.
5. The result is written back to the cache memory.
o g — | |
% éﬂ _L> % % %E}J address
=Z 1 5 %I_’% gg queve |
£5 3 7 g5
= =
= &
L =7t
. *
mecr)rflfc;g)lrl lﬁ)ank FPGA gap detector o

L
Data Caching Method

- 192 x 128 pixels are cached on block RAMs.
- The cached area is changed.

- X >
192=64x3

L
Data Caching Method

- 192 x 128 pixels are cached on block RAMSs.
- The cached area is changed.
- Among the cached pixels, 64 pixels are newly processed.

- X >
192=64x3

L
Data Caching Method

- By applying the push operation to an active pixel, its
neighbor pixels may become active from one to another.

(b) @

(H)

L
Data Caching Method

- By applying the push operation to an active pixel, its
neighbor pixels may become active from one to another.

- There are four possibilities that active pixels go out of the
cached area.

(b) @

(H)

L
Data Caching Method

- By applying the push operation to an active pixel, its
neighbor pixels may become active from one to another.
- There are four possibilities that active pixels go out of the

cached area.

- In case of (a), those pixels are pushed in a queue and processed
afterward.

- In case of (b) or (c), a control flag is set, and vertical scan is
rewound.

- In case of (d), those pixels are processed in the next vertical scan.

(b) @

(H)

L
Data Mapping Method

- 192 x 128 pixels in the target area are mapped onto
12 banks (arranged 3 x 4) to allow parallel accesses to them.

- 12 pixels around any coordinate can be read out in parallel.

- 9 of the 12 pixels are selected by the selectors, and given to
the push-relabel unit.

bl b2 c0 cl)
e — . 2‘948
e 7 |
J4 A0
/ =
?ﬁ // d - 1 f =]L
s gl hff 1 7
1 0 I i) k]

L
Updating the Cached Area

- The data of the next 192 pixels are read into a set of
buffers which consist of distributed RAMs, while the pixels
are being processing.

memory

¢ nng

L
Updating the Cached Area

- When the number of active pixels becomes less than the
given threshold, the push-relabel unit is stopped.

- The data of 3 of the 12 banks are updated in parallel.

—_—
g

—

memory

¢ nng

L
Updating the Cached Area

- Old data are written back to the off-chip memory, while the
pixels are being processing.

:{amimilmm

memory

« T ¢

L
Filling the Pipeline Stages

- Push-relabel unit has 10 stages.

- In order to achieve higher performance, we need to
fulfill all the pipeline stages.

Filling the Pipeline Stages

- Push-relabel unit has 10 stages.

- In order to achieve higher performance, we need to
fulfill all the pipeline stages.

- However, while a pixel u is being processed in this
unit,

Filling the

Pipeline Stages

- Push-relabel unit has 10 stages.
- In order to achieve higher performance, we need to

fulfill all the pi

- However, whi
unit, its neigh

neline stages.
e a pixel u Is being processed In this

nDor pixel v can not be put into the unit,

because c¢f(v, u) may be changed by the processing

of u.

Management of the Pixels

(1P} (1%

- Suppose that pixels “a” to “j” are being processed.
- First, new pixels are put into the shift register “A” to “Z".

- If one of “a” to “j’ is a neighbor of the pixel on “C”, the data
on “C” continues to stay on the shift register.

- If several pixels can be processed, the older one is
chosen (piriority is “Z">--->“B">"A").

the address from the address queue

1t

.

o 5

= T i a

= &4 X v A

o«

£ B . X V]

z T neighbors?|«

2 S% vy b > B

] \

ER> 1 . y o
L — > . L 1 c

E’ﬁ Sy neighbors?|¢ > 3

= = E‘J : - \ 4 C 2

°3g| == =3] S

W 2} L .

57| = neighbors?| > T

£2| 7 j > v Z

39 £ J 3

B oY : o

2 2 : : \ Z Z

= =

- =~] =

" |Ineighbors?|< |

Detecting Gaps Using a Histogram

- h(u) is heightened to |V| + 1 by gap relabeling heuristics
If vertex of height = k does NOT exist and h(u) > k.

- In our implementation, k is looked up using a histogram
of the height of all pixels.

- In our experiments,

- The maximum value of each bin is less than 10000, so the data
width of counters is 15b.

- The maximum k is less than 512.
We used 800 instead of |V].

=
=

Experimental Results

- We have implemented the circuit on Xilinx XC6VLX130T-3.

- The circuit uses 33.3 KLUTs (41%) and 97 36Kb block
RAMs (36%).

- Operational frequency is 201.1 MHz.

- We have compared the performance with

- Software program (maxflow-v3.01) on Intel Core 2 Duo E8500
@3.16 GHz.

- GPU program on GeForce GTX280.
- The graph is generated on the host computer.

Performance Comparison 1

Seeds (background)

Seeds (foreground)

Flower Stone?2 Person2
Segmentation results

Performance Comparison 1

- The performance of the FPGA is almost comparable with
GPU (20 -- 30 fps).

- Proposed system is about 3 to 5 times faster than CPU.

Exec. Time (msec) Speedup

Image Size CPU GPU FPGA
Flower 600 x 450 161.1 37 30.7 5.2
Stone2 640 x 480 117.2 44 45.8 2.6

Person2 600 x 450 118.5 61 36.7 3.2

Performance Comparison 1

- This figure shows the number of the pixels in the push-
relabel unit when processing Person?2.

- All stages are fully filled during about 50% of the
execution time.

- But the idle time occupies about 20%.

50

40-
-~ 30
2

< 904
2 B
0 0 12 3 45 6 7 8 9 10
The number of the pixels in the push-relabel unit

Performance Comparison 2

- Four different seeds are given to “dog’.

- The speedup depends on the seeds, but fast enough for
real-time processing.

*

(# <

n Ay
o] (//’/

Dog / seedl Dog / seed2 Dog / seed3 Dog / seed4

Image Size CPU FPGA

Dog / seedl 482 x 321 182.1 31.7 5.7
Dog / seed? 482 x 321 300.0 30.3 9.9
Dog / seed3 482 x 321 185.7 26.4 7.0

Dog / seed4 482 x 321 363.4 33.1 11.0

Performance Comparison 3

- Images with small object are segmented.

- Worse speedup because of higher idle ratio of the
pipeline stages (processing of the background pixels
finishes faster than the pixels on the foreground).

- However, it is fast enough for real-time processing.

Wolf | Sheep

Exec. Time (msec) Speedup
Image Size CPU FPGA
Wolf 482 x 321 17.8 7.6 2.3

Sheep 450 x 600 33.6 16.9 2.0

Conclusions and Future Work

- We have proposed an acceleration method of the max-
flow problem with FPGA.

- The performance gain compared with a software library
on CPU is about 3 to 5.

- For more speedup,

- We need to fill the pipeline stage of the push-relabel unit more.

- Several push-relabel units can be implemented
(the size of the unit is small enough).

Thank you for your kind attention

