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 The level set method is a numerical technique 
for tracking interfaces, and often used for 
image segmentation. 

 The purpose of our research is to realize the 
real-time processing of a level set method on 
an FPGA. 



 In the level set method, a closed curve is 
defined first, and then the curve is gradually 
evolved in order to detect desired region. 

Object(desired  region) 

Initial closed curve 

Blue region is the 
target object, and  
red circle is the 
initial closed curve. 
 



 In the level set method, a closed curve is 
defined first, and then the curve is gradually 
evolved in order to detect desired region. 

The closed curve is 
gradually evolved 
toward the target 
object. 
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 In the level set method, a closed curve is 
defined first, and then the curve is gradually 
evolved in order to detect desired region. 

Detected region 

Finally, the closed 
curve stops at the 
border of the object. 



 A three-dimensional auxiliary function is used to 
develop the closed curve. 

 The auxiliary function satisfies the following 
condition. 

         𝛾 𝑡 = 𝒑|𝜑 𝒑, 𝑡 = 0 .  
   𝛾 𝑡  is closed curve. 

  𝜑 𝒑, 𝑡  is auxiliary function.  

      Where 𝒑 is a position vector and 𝑡 is time. 

 The closed curve is given as the cross section of 
the three-dimensional function and the plane of 
𝑧 = 0. 

𝜑(𝒑, 𝑡) 

𝛾(𝑡) 



 In general, the initial value of the auxiliary function 
is given by the following equation. 

𝜑 𝒑, 𝑡 = 0 = ±𝑑 , 

where 𝑑 is distance from the point 𝒑 to 𝛾 𝑡 = 0  
(the closed curve at the time 𝑡 = 0). 

 Positive sign is used if the point  𝒑 is outside the 
closed curve, and negative sign is used if the point 𝒑 
is inside the closed curve. 

 
Closed curve 



 The closed curve is evolved on the plane of 
𝑧 = 0 by evolving the three-dimensional 
auxiliary function in three-dimensional space. 

 By using the three-dimensional auxiliary 
function, it becomes possible to follow the 
topology changes, such as breaking into two, 
merging two shapes into one.  



 The evolution of the auxiliary function is 
calculated by differentiating the closed curve 
𝛾 𝑡  with respect to time 𝑡. 

 The closed curve is represented as              
𝛾 𝑡 = 𝒑|𝜑 𝒑, 𝑡 = 0 . The following 
equation is given by differentiating 𝛾 𝑡  with 
respect to 𝑡. 

𝜑𝑡 + 𝛻𝜑 ∙ 𝒑′ 𝑡 = 0, 

      Where 𝜑𝑡 =
𝜕𝜑

𝜕𝑡
, 𝛻𝜑 =

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
. 



 Let 𝑛 be an outward directed normal to the 
curve, and the auxiliary function evolves in the 
direction of 𝑛 with the speed 𝐹. 

 Then 𝑛 and 𝐹 can be rewritten as follows 

𝑛 =
𝛻𝜑

𝛻𝜑
, 𝐹 = 𝒑′ 𝑡 ∙ 𝑛. 

 With these equations and the former equation:  
𝜑𝑡 + 𝛻𝜑 ∙ 𝒑′ 𝑡 = 0,  

     we can obtain the equation:  

𝜑𝑡 + 𝐹 𝛻𝜑 = 0. 

 The auxiliary function is evolved according to 
this equation. 

 



 The speed function 𝐹 has to be slowed down 
to zero on the edges of the desired regions. 

 A function 𝑘𝐼 𝑥, 𝑦  which becomes smaller 
around the edges is introduced, and 𝐹 is 
multiplied by 𝑘𝐼 𝑥, 𝑦 : 

𝐹′ = 𝑘𝐼 𝑥, 𝑦 × 𝐹. 
 By using 𝐹′ as a threshold, the evolution of 

the auxiliary function can be slowed down 
around edges. 



 In general, 𝑘𝐼 𝑥, 𝑦  is given by the following 
equation: 

𝑘𝐼 𝑥, 𝑦 =
1

1 + |𝛻𝐺𝜎 ∗ 𝐼 𝑥, 𝑦 |
 

      or,  

𝑘𝐼 𝑥, 𝑦 = 𝑒−|𝛻𝐺𝜎∗𝐼 𝑥,𝑦 |. 

 Where |𝛻𝐺𝜎 ∗ 𝐼 𝑥, 𝑦 | is the brightness gradient obtained 
after applying a Gaussian filter of variance 𝜎. 

 Around the edges, 𝑘𝐼 𝑥, 𝑦  becomes smaller 
because the brightness gradient  becomes bigger. 



 To calculate the evolution of the auxiliary function, the 
variables in the auxiliary function are discretized as 
follows: 

 𝜑 𝒑, 𝑡 = 𝜑 𝑖ℎ, 𝑗ℎ, 𝑛∆𝑡 . 
 Where 𝑖, 𝑗, 𝑛 are integers, and ℎ, ∆𝑡 are step sizes of 

𝒑 = (𝑥, 𝑦) and 𝑡. 

 Then the equation: 
   𝜑𝑡 + 𝐹 𝛻𝜑 = 0 
     can be rewritten as  

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝐹 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 . 

 With this equation, the auxiliary function in time 𝑛 + 1  can 
be obtained from the auxiliary function in time 𝑛. 



 The computational complexity to evolve the 
auxiliary function over all image is very high. 

 To reduce computational complexity, narrow band 
method was proposed. 

 In the narrow band method, the auxiliary function is 
evolved only around the closed curve. 

 But, it is hard to implement it on hardware because 
of the irregular memory access required in the 
narrow band method. 

𝛾(𝑡) 

The auxiliary function is 
evolved only in orange region 
(narrow band). 
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The shape of narrow band is 
changed according to the 
closed curve. 
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     N=0        N=100               N=300         N=500 

     N=0        N=50                N=200         N=500 

N is the number of repetition in processing. 



1. Its computational complexity is still high. 

 Even with the narrow band method, it is hard to  
achieve real-time processing. 

2. Some shapes may not be detected 
according to the starting point of the closed 
curve. 

If the closed curve is grown inwards, the 
shapes which is (1) out of the closed 
curve, or (2) surrounded by other 
shapes cannot be detected. 

Cannot detect 



 We propose a new level set algorithm to solve 
these problems.  
 

 Our algorithm is designed so as to allow deep 
pipelining on hardware systems, and able to 
detect all objects in the image. 



 In our algorithm, the following two changes 
are added to the original algorithm. 

 First, 𝐹 is fixed to 1. (𝐹 is the evolving speed 
of the auxiliary function). 

With this change, the equation: 

  𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝐹′ 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛  

can be rewritten as 

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 . 



 Second, the initial auxiliary function is given as a 
flat plane. 

          𝜑 𝒑, 𝑡 = 0 = 𝑐𝑜𝑛𝑠𝑡. 
 

 
 The auxiliary function is evolved over all image. 

 In the narrow band method, the auxiliary function is 
evolved only around the closed curve 

 The closed curves are automatically generated 
while the auxiliary function is evolved. 

𝜑 𝒑, 𝑡 = 𝑐𝑜𝑛𝑠𝑡 



N=0    N=50 

N=200    N=700 

The yellow plane is the initial auxiliary function and the red plane is the 
image. 
In our algorithm, the regions with 𝜑 > 0 correspond to the borders of the 
objects, and the region with 𝜑 < 0 correspond to the objects, or their 
background. 

input image 𝐺𝐼𝑖𝑗  

output image 



 Step 1. 

 Apply the Gaussian filter to the input image as 
follows: 

𝐺𝐼𝑖𝑗 = 𝐼𝑖𝑗 ∗  𝐺𝜎  , 

      where 𝐺𝜎  is a Gaussian filter of variance 𝜎 and 
      𝐺𝐼𝑖𝑗  is the image after applying the Gaussian  

      filter. 



 Step2.  
Calculate 𝑘𝐼𝑖𝑗  from its four neighbor pixels. 

𝐼𝑥𝑖𝑗
=

𝐺𝐼𝑖+1,𝑗 − 𝐺𝐼𝑖−1,𝑗

2
, 𝐼𝑦𝑖𝑗

=
𝐺𝐼𝑖,𝑗+1 − 𝐺𝐼𝑖,𝑗−1

2
 

𝛻𝑖𝑗𝐼𝑖𝑗 = 𝐼𝑥𝑖𝑗
2 + 𝐼𝑦𝑖𝑗

2 

𝑘𝐼𝑖𝑗 =
1

1 + 𝛻𝑖𝑗𝐼𝑖𝑗

   or    𝑘𝐼𝑖𝑗 = 𝑒− 𝛻𝑖𝑗𝐼𝑖𝑗  

 In case of  color  images, 𝐼𝑥  and 𝐼𝑦 are calculated as  
𝐼𝑥 ← 𝐼𝑅𝑥

+ 𝐼𝐺𝑥
+ 𝐼𝐵𝑥

 and  𝐼𝑦 ← 𝐼𝑅𝑦
+ 𝐼𝐺𝑦

+ 𝐼𝐵𝑦
. 

 



 Step3. 
Calculate |𝛻𝑖𝑗𝜑𝑖𝑗

𝑛 | 𝑛 ≥ 1  from its four neighbor 
pixels. 

𝜑𝑥𝑖𝑗
𝑛 =

𝜑𝑖+1,𝑗
𝑛 − 𝜑𝑖−1,𝑗

𝑛

2
 

𝜑𝑦𝑖𝑗
𝑛 =

𝜑𝑖,𝑗+1
𝑛 − 𝜑𝑖,𝑗−1

𝑛

2
 

𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 = 𝜑𝑥𝑖𝑗

𝑛 2
+ 𝜑𝑦𝑖𝑗

𝑛 2
  

 



 Step4.  

Calculate 𝜑𝑖𝑗
𝑛+1 by the equation:  

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 . 

 When 𝑛 = 0, 𝜑𝑖𝑗
𝑛+1 is calculated by the following 

equation because 𝛻𝑖𝑗𝜑𝑖𝑗
0 = 0 at this time. 

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗  

 



 Step 5. 

Repeat step3(calculate|𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 |) and step4(Calculate 

𝜑𝑖𝑗
𝑛+1) until the number of repetition reaches to the 

fixed number 𝑁, or all evolution for 𝜑 > 0 stop. 

 



Summary 
 Step 1. 

 Apply the Gaussian filter to the input image. 
 Step 2. 

Calculate 𝑘𝐼𝑖𝑗  from its four neighbor pixels. 

 Step 3. 
Calculate |𝛻𝑖𝑗𝜑𝑖𝑗

𝑛 | 𝑛 ≥ 1  from its four neighbor pixels. 
 Step 4. 

Calculate 𝜑𝑖𝑗
𝑛+1 by the equation:  

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 . 

 Step 5. 
Repeat step3 and step4 until the end condition is satisfied. 
 



      input image  original algorithm              our algorithm 

Our algorithm can detect the shapes of the objects surrounded by 
other objects, but too many segments are detected on the objects. 



 By increasing number of repetition, small 
segments can be eliminated. 

 But, it may fail to detect the boundaries with 
the small change of the brightness. 

  input image                   N=50   N=1000 



 With our algorithm, almost same result as the 
original level set method can be obtained by 
specifying a background or desired region 
afterward (as being done in the original 
method before starting the computation). 

Specifying desired region 

The result of our algorithm 
The result of original 
algorithm 



 The steps in our algorithm can be grouped as follows. 

 1. Apply a Gaussian filter. 

 2. Calculate 𝑘𝐼𝑖𝑗. 

 3. Calculate 𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛  repeatedly. 

 The system can be constructed by three types of 
units. 

       A block diagram of our circuit. 



 All units scan the image from (0,0) to (𝑋 − 1, 𝑌 − 1). 
 Each unit can calculate its output using only four 

(eight) neighbor values (the outputs of its previous 
unit). 
 

Gaussian Filter 

𝑘𝐼unit 

𝜑1unit 

𝜑𝑘unit 𝑘 ≥ 2  

Delay by  
  Gaussian Filter 

Delay by  
  𝑘𝐼unit 

Delay by 
   𝜑1unit 

Delay 
by 𝜑𝑘unit 

(0,0) 

(𝑋 − 1, 𝑌 − 1) 



Gaussian Filter 

𝑘𝐼unit 

𝜑1unit 

𝜑𝑘unit 𝑘 ≥ 2  

(0,0) 

(𝑋 − 1, 𝑌 − 1) 

 These pixels can be processed on the deeply 
pipelined circuit. 



Gaussian Filter 

𝑘𝐼unit 

𝜑1unit 

𝜑𝑘unit 𝑘 ≥ 2  

(0,0) 

(𝑋 − 1, 𝑌 − 1) 

Input image Line buffer 

Gaussian Filter 𝑘𝐼unit 𝜑1unit 𝜑𝑘unit 𝑘 ≥ 2  

<pipelined circuit> 



 If the number of 𝜑 unit is 𝑁 ( which means 
that the repetition number is 𝑁) , the 
pipelined circuit processes 𝑁 + 2 pixels in 
parallel. 

Gaussian Filter 𝑘𝐼unit 𝜑1unit 𝜑𝑘unit 𝑘 ≥ 2  

… 

𝑁 units 
<pipelined circuit> 



 
 Gaussian Filter 

Nine pixels on three 
lines are held on the 
register array. 
Two line buffers are 
used to supply the 
data of the three lines. 



 
 𝑘𝐼  unit 

𝑘𝐼  is calculated using a 
register array which holds 
its four neighbor pixels. 
Two line buffers are used. 
An array is used to 

calculate 
1

1+𝑥
. 

 



 
 𝜑 unit 

𝜑 is also calculated using a 
register array which holds its 
four neighbor pixels. 
Two line buffers are also used 
to supply the data of the three 
lines, and another is used to 
control delays. 
An array is used to calculate 

𝑥. 



 We have implemented the circuit for 𝑁 = 31, 51, 101 
on Xilinx XC4VLX160. 

 Target image size is 640 × 480. 

 Operating frequency is 252.4MHz. 
 The square and multiply operations are 

implemented using LUTs (in order to avoid 
multiplier bottleneck). 
 
 
 
 

 

N 31 51 101 

LUTs(K) 19.8 32.8 64.9 

BRAMs 67 107 207 

Performance 
        (fps) 

one frame 769 739 674 

throughput 822 822 822 



 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁). 
 

 
 
 
 
 
 When the image size is 640 × 480, up to 𝑁 = 2201 can 

be calculated in real-time(30 fps) by running our circuit 
22 times. 

 By running the circuit 𝑚 times, the performance becomes 
one-𝑚th. 

𝜑101 

Circuit for N=101 



𝜑101 

Circuit for N=101 Use 𝜑101 as the output of 𝜑1 unit 

 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁). 
 

 
 
 
 
 
 When the image size is 640 × 480, up to 𝑁 = 2201 can 

be calculated in real-time(30 fps) by running our circuit 
22 times. 

 By running the circuit 𝑚 times, the performance becomes 
one-𝑚th. 



 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁). 
 

 
 
 
 
 
 When the image size is 640 × 480, up to 𝑁 = 2201 can 

be calculated in real-time(30 fps) by running our circuit 
22 times. 

 By running the circuit 𝑚 times, the performance becomes 
one-𝑚th. 

𝜑101+(101−1) 

Circuit for N=101 



Run the circuit 𝑚 times Circuit for N=101 

 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁). 
 

 
 
 
 
 
 When the image size is 640 × 480, up to 𝑁 = 2201 can 

be calculated in real-time(30 fps) by running our circuit 
22 times. 

 By running the circuit 𝑚 times, the performance becomes 
one-𝑚th. 



 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁). 
 

 
 
 
 
 
 When the image size is 640 × 480, up to 𝑁 = 2201 can 

be calculated in real-time(30 fps) by running our circuit 
22 times. 

 By running the circuit 𝑚 times, the performance becomes 
one-𝑚th. 

Circuit for N=101 

𝜑101+ 𝑚−1 (101−1) 



 When the image width is 𝑋 and 𝑁 + 2 pixels are processed 
in parallel on the pipelined circuit, the number of block 
RAMs becomes as  follows. 

 When 𝑋 ≤ 1024  
7 + 2(𝑁 − 1), 

 when 𝑋 > 1024 

13 +
7(𝑁−1)

2
. 

 When the image size is 1920 × 1080  and 𝑁 = 101, 363 
block RAMs are required. 

 If we want to implement this circuit on a small FPGA, we 
should implement the circuit for 𝑁 = 51 and run it twice.  
Then, the number of block RAMs becomes 188.(However 
the performance becomes half.) 



 We have described a new level set algorithm 
and  its FPGA implementation. 

 With our algorithm, it becomes possible to 
detect all objects in the image, which is 
difficult for previous level set algorithms. 

 In addition, we have shown that real-time 
processing is possible even with a small size 
FPGA. 
 
 


