
Haruhisa Tsuyama, Tsutomu Maruyama
 University of Tsukuba

 The level set method is a numerical technique
for tracking interfaces, and often used for
image segmentation.

 The purpose of our research is to realize the
real-time processing of a level set method on
an FPGA.

 In the level set method, a closed curve is
defined first, and then the curve is gradually
evolved in order to detect desired region.

Object(desired region)

Initial closed curve

Blue region is the
target object, and
red circle is the
initial closed curve.

 In the level set method, a closed curve is
defined first, and then the curve is gradually
evolved in order to detect desired region.

The closed curve is
gradually evolved
toward the target
object.

 In the level set method, a closed curve is
defined first, and then the curve is gradually
evolved in order to detect desired region.

Finally, the closed
curve stops at the
border of the object.

 In the level set method, a closed curve is
defined first, and then the curve is gradually
evolved in order to detect desired region.

Detected region

Finally, the closed
curve stops at the
border of the object.

 A three-dimensional auxiliary function is used to
develop the closed curve.

 The auxiliary function satisfies the following
condition.

 𝛾 𝑡 = 𝒑|𝜑 𝒑, 𝑡 = 0 .
 𝛾 𝑡 is closed curve.

 𝜑 𝒑, 𝑡 is auxiliary function.

 Where 𝒑 is a position vector and 𝑡 is time.

 The closed curve is given as the cross section of
the three-dimensional function and the plane of
𝑧 = 0.

𝜑(𝒑, 𝑡)

𝛾(𝑡)

 In general, the initial value of the auxiliary function
is given by the following equation.

𝜑 𝒑, 𝑡 = 0 = ±𝑑 ,

where 𝑑 is distance from the point 𝒑 to 𝛾 𝑡 = 0
(the closed curve at the time 𝑡 = 0).

 Positive sign is used if the point 𝒑 is outside the
closed curve, and negative sign is used if the point 𝒑
is inside the closed curve.

Closed curve

 The closed curve is evolved on the plane of
𝑧 = 0 by evolving the three-dimensional
auxiliary function in three-dimensional space.

 By using the three-dimensional auxiliary
function, it becomes possible to follow the
topology changes, such as breaking into two,
merging two shapes into one.

 The evolution of the auxiliary function is
calculated by differentiating the closed curve
𝛾 𝑡 with respect to time 𝑡.

 The closed curve is represented as
𝛾 𝑡 = 𝒑|𝜑 𝒑, 𝑡 = 0 . The following
equation is given by differentiating 𝛾 𝑡 with
respect to 𝑡.

𝜑𝑡 + 𝛻𝜑 ∙ 𝒑′ 𝑡 = 0,

 Where 𝜑𝑡 =
𝜕𝜑

𝜕𝑡
, 𝛻𝜑 =

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
.

 Let 𝑛 be an outward directed normal to the
curve, and the auxiliary function evolves in the
direction of 𝑛 with the speed 𝐹.

 Then 𝑛 and 𝐹 can be rewritten as follows

𝑛 =
𝛻𝜑

𝛻𝜑
, 𝐹 = 𝒑′ 𝑡 ∙ 𝑛.

 With these equations and the former equation:
𝜑𝑡 + 𝛻𝜑 ∙ 𝒑′ 𝑡 = 0,

 we can obtain the equation:

𝜑𝑡 + 𝐹 𝛻𝜑 = 0.

 The auxiliary function is evolved according to
this equation.

 The speed function 𝐹 has to be slowed down
to zero on the edges of the desired regions.

 A function 𝑘𝐼 𝑥, 𝑦 which becomes smaller
around the edges is introduced, and 𝐹 is
multiplied by 𝑘𝐼 𝑥, 𝑦 :

𝐹′ = 𝑘𝐼 𝑥, 𝑦 × 𝐹.
 By using 𝐹′ as a threshold, the evolution of

the auxiliary function can be slowed down
around edges.

 In general, 𝑘𝐼 𝑥, 𝑦 is given by the following
equation:

𝑘𝐼 𝑥, 𝑦 =
1

1 + |𝛻𝐺𝜎 ∗ 𝐼 𝑥, 𝑦 |

 or,

𝑘𝐼 𝑥, 𝑦 = 𝑒−|𝛻𝐺𝜎∗𝐼 𝑥,𝑦 |.

 Where |𝛻𝐺𝜎 ∗ 𝐼 𝑥, 𝑦 | is the brightness gradient obtained
after applying a Gaussian filter of variance 𝜎.

 Around the edges, 𝑘𝐼 𝑥, 𝑦 becomes smaller
because the brightness gradient becomes bigger.

 To calculate the evolution of the auxiliary function, the
variables in the auxiliary function are discretized as
follows:

 𝜑 𝒑, 𝑡 = 𝜑 𝑖ℎ, 𝑗ℎ, 𝑛∆𝑡 .
 Where 𝑖, 𝑗, 𝑛 are integers, and ℎ, ∆𝑡 are step sizes of

𝒑 = (𝑥, 𝑦) and 𝑡.

 Then the equation:
 𝜑𝑡 + 𝐹 𝛻𝜑 = 0
 can be rewritten as

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝐹 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 .

 With this equation, the auxiliary function in time 𝑛 + 1 can
be obtained from the auxiliary function in time 𝑛.

 The computational complexity to evolve the
auxiliary function over all image is very high.

 To reduce computational complexity, narrow band
method was proposed.

 In the narrow band method, the auxiliary function is
evolved only around the closed curve.

 But, it is hard to implement it on hardware because
of the irregular memory access required in the
narrow band method.

𝛾(𝑡)

The auxiliary function is
evolved only in orange region
(narrow band).

 The computational complexity to evolve the
auxiliary function over all image is very high.

 To reduce computational complexity, narrow band
method was proposed.

 In the narrow band method, the auxiliary function is
evolved only around the closed curve.

 But, it is hard to implement it on hardware because
of the irregular memory access required in the
narrow band method.

The shape of narrow band is
changed according to the
closed curve.

 The computational complexity to evolve the
auxiliary function over all image is very high.

 To reduce computational complexity, narrow band
method was proposed.

 In the narrow band method, the auxiliary function is
evolved only around the closed curve.

 But, it is hard to implement it on hardware because
of the irregular memory access required in the
narrow band method.

The shape of narrow band is
changed according to the
closed curve.

 N=0 N=100 N=300 N=500

 N=0 N=50 N=200 N=500

N is the number of repetition in processing.

1. Its computational complexity is still high.

 Even with the narrow band method, it is hard to
achieve real-time processing.

2. Some shapes may not be detected
according to the starting point of the closed
curve.

If the closed curve is grown inwards, the
shapes which is (1) out of the closed
curve, or (2) surrounded by other
shapes cannot be detected.

Cannot detect

 We propose a new level set algorithm to solve
these problems.

 Our algorithm is designed so as to allow deep
pipelining on hardware systems, and able to
detect all objects in the image.

 In our algorithm, the following two changes
are added to the original algorithm.

 First, 𝐹 is fixed to 1. (𝐹 is the evolving speed
of the auxiliary function).

With this change, the equation:

 𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝐹′ 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛

can be rewritten as

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 .

 Second, the initial auxiliary function is given as a
flat plane.

 𝜑 𝒑, 𝑡 = 0 = 𝑐𝑜𝑛𝑠𝑡.

 The auxiliary function is evolved over all image.

 In the narrow band method, the auxiliary function is
evolved only around the closed curve

 The closed curves are automatically generated
while the auxiliary function is evolved.

𝜑 𝒑, 𝑡 = 𝑐𝑜𝑛𝑠𝑡

N=0 N=50

N=200 N=700

The yellow plane is the initial auxiliary function and the red plane is the
image.
In our algorithm, the regions with 𝜑 > 0 correspond to the borders of the
objects, and the region with 𝜑 < 0 correspond to the objects, or their
background.

input image 𝐺𝐼𝑖𝑗

output image

 Step 1.

 Apply the Gaussian filter to the input image as
follows:

𝐺𝐼𝑖𝑗 = 𝐼𝑖𝑗 ∗ 𝐺𝜎 ,

 where 𝐺𝜎 is a Gaussian filter of variance 𝜎 and
 𝐺𝐼𝑖𝑗 is the image after applying the Gaussian

 filter.

 Step2.
Calculate 𝑘𝐼𝑖𝑗 from its four neighbor pixels.

𝐼𝑥𝑖𝑗
=

𝐺𝐼𝑖+1,𝑗 − 𝐺𝐼𝑖−1,𝑗

2
, 𝐼𝑦𝑖𝑗

=
𝐺𝐼𝑖,𝑗+1 − 𝐺𝐼𝑖,𝑗−1

2

𝛻𝑖𝑗𝐼𝑖𝑗 = 𝐼𝑥𝑖𝑗
2 + 𝐼𝑦𝑖𝑗

2

𝑘𝐼𝑖𝑗 =
1

1 + 𝛻𝑖𝑗𝐼𝑖𝑗

 or 𝑘𝐼𝑖𝑗 = 𝑒− 𝛻𝑖𝑗𝐼𝑖𝑗

 In case of color images, 𝐼𝑥 and 𝐼𝑦 are calculated as
𝐼𝑥 ← 𝐼𝑅𝑥

+ 𝐼𝐺𝑥
+ 𝐼𝐵𝑥

 and 𝐼𝑦 ← 𝐼𝑅𝑦
+ 𝐼𝐺𝑦

+ 𝐼𝐵𝑦
.

 Step3.
Calculate |𝛻𝑖𝑗𝜑𝑖𝑗

𝑛 | 𝑛 ≥ 1 from its four neighbor
pixels.

𝜑𝑥𝑖𝑗
𝑛 =

𝜑𝑖+1,𝑗
𝑛 − 𝜑𝑖−1,𝑗

𝑛

2

𝜑𝑦𝑖𝑗
𝑛 =

𝜑𝑖,𝑗+1
𝑛 − 𝜑𝑖,𝑗−1

𝑛

2

𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 = 𝜑𝑥𝑖𝑗

𝑛 2
+ 𝜑𝑦𝑖𝑗

𝑛 2

 Step4.

Calculate 𝜑𝑖𝑗
𝑛+1 by the equation:

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 .

 When 𝑛 = 0, 𝜑𝑖𝑗
𝑛+1 is calculated by the following

equation because 𝛻𝑖𝑗𝜑𝑖𝑗
0 = 0 at this time.

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗

 Step 5.

Repeat step3(calculate|𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 |) and step4(Calculate

𝜑𝑖𝑗
𝑛+1) until the number of repetition reaches to the

fixed number 𝑁, or all evolution for 𝜑 > 0 stop.

Summary
 Step 1.

 Apply the Gaussian filter to the input image.
 Step 2.

Calculate 𝑘𝐼𝑖𝑗 from its four neighbor pixels.

 Step 3.
Calculate |𝛻𝑖𝑗𝜑𝑖𝑗

𝑛 | 𝑛 ≥ 1 from its four neighbor pixels.
 Step 4.

Calculate 𝜑𝑖𝑗
𝑛+1 by the equation:

𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 .

 Step 5.
Repeat step3 and step4 until the end condition is satisfied.

 input image original algorithm our algorithm

Our algorithm can detect the shapes of the objects surrounded by
other objects, but too many segments are detected on the objects.

 By increasing number of repetition, small
segments can be eliminated.

 But, it may fail to detect the boundaries with
the small change of the brightness.

 input image N=50 N=1000

 With our algorithm, almost same result as the
original level set method can be obtained by
specifying a background or desired region
afterward (as being done in the original
method before starting the computation).

Specifying desired region

The result of our algorithm
The result of original
algorithm

 The steps in our algorithm can be grouped as follows.

 1. Apply a Gaussian filter.

 2. Calculate 𝑘𝐼𝑖𝑗.

 3. Calculate 𝜑𝑖𝑗
𝑛+1 = 𝜑𝑖𝑗

𝑛 − ∆𝑡𝑘𝐼𝑖𝑗 𝛻𝑖𝑗𝜑𝑖𝑗
𝑛 repeatedly.

 The system can be constructed by three types of
units.

 A block diagram of our circuit.

 All units scan the image from (0,0) to (𝑋 − 1, 𝑌 − 1).
 Each unit can calculate its output using only four

(eight) neighbor values (the outputs of its previous
unit).

Gaussian Filter

𝑘𝐼unit

𝜑1unit

𝜑𝑘unit 𝑘 ≥ 2

Delay by
 Gaussian Filter

Delay by
 𝑘𝐼unit

Delay by
 𝜑1unit

Delay
by 𝜑𝑘unit

(0,0)

(𝑋 − 1, 𝑌 − 1)

Gaussian Filter

𝑘𝐼unit

𝜑1unit

𝜑𝑘unit 𝑘 ≥ 2

(0,0)

(𝑋 − 1, 𝑌 − 1)

 These pixels can be processed on the deeply
pipelined circuit.

Gaussian Filter

𝑘𝐼unit

𝜑1unit

𝜑𝑘unit 𝑘 ≥ 2

(0,0)

(𝑋 − 1, 𝑌 − 1)

Input image Line buffer

Gaussian Filter 𝑘𝐼unit 𝜑1unit 𝜑𝑘unit 𝑘 ≥ 2

<pipelined circuit>

 If the number of 𝜑 unit is 𝑁 (which means
that the repetition number is 𝑁) , the
pipelined circuit processes 𝑁 + 2 pixels in
parallel.

Gaussian Filter 𝑘𝐼unit 𝜑1unit 𝜑𝑘unit 𝑘 ≥ 2

…

𝑁 units
<pipelined circuit>

 Gaussian Filter

Nine pixels on three
lines are held on the
register array.
Two line buffers are
used to supply the
data of the three lines.

 𝑘𝐼 unit

𝑘𝐼 is calculated using a
register array which holds
its four neighbor pixels.
Two line buffers are used.
An array is used to

calculate
1

1+𝑥
.

 𝜑 unit

𝜑 is also calculated using a
register array which holds its
four neighbor pixels.
Two line buffers are also used
to supply the data of the three
lines, and another is used to
control delays.
An array is used to calculate

𝑥.

 We have implemented the circuit for 𝑁 = 31, 51, 101
on Xilinx XC4VLX160.

 Target image size is 640 × 480.

 Operating frequency is 252.4MHz.
 The square and multiply operations are

implemented using LUTs (in order to avoid
multiplier bottleneck).

N 31 51 101

LUTs(K) 19.8 32.8 64.9

BRAMs 67 107 207

Performance
 (fps)

one frame 769 739 674

throughput 822 822 822

 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁).

 When the image size is 640 × 480, up to 𝑁 = 2201 can

be calculated in real-time(30 fps) by running our circuit
22 times.

 By running the circuit 𝑚 times, the performance becomes
one-𝑚th.

𝜑101

Circuit for N=101

𝜑101

Circuit for N=101 Use 𝜑101 as the output of 𝜑1 unit

 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁).

 When the image size is 640 × 480, up to 𝑁 = 2201 can

be calculated in real-time(30 fps) by running our circuit
22 times.

 By running the circuit 𝑚 times, the performance becomes
one-𝑚th.

 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁).

 When the image size is 640 × 480, up to 𝑁 = 2201 can

be calculated in real-time(30 fps) by running our circuit
22 times.

 By running the circuit 𝑚 times, the performance becomes
one-𝑚th.

𝜑101+(101−1)

Circuit for N=101

Run the circuit 𝑚 times Circuit for N=101

 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁).

 When the image size is 640 × 480, up to 𝑁 = 2201 can

be calculated in real-time(30 fps) by running our circuit
22 times.

 By running the circuit 𝑚 times, the performance becomes
one-𝑚th.

 By running our circuit 𝑚 times, we can obtain 𝜑𝑘(𝑘 > 𝑁).

 When the image size is 640 × 480, up to 𝑁 = 2201 can

be calculated in real-time(30 fps) by running our circuit
22 times.

 By running the circuit 𝑚 times, the performance becomes
one-𝑚th.

Circuit for N=101

𝜑101+ 𝑚−1 (101−1)

 When the image width is 𝑋 and 𝑁 + 2 pixels are processed
in parallel on the pipelined circuit, the number of block
RAMs becomes as follows.

 When 𝑋 ≤ 1024
7 + 2(𝑁 − 1),

 when 𝑋 > 1024

13 +
7(𝑁−1)

2
.

 When the image size is 1920 × 1080 and 𝑁 = 101, 363
block RAMs are required.

 If we want to implement this circuit on a small FPGA, we
should implement the circuit for 𝑁 = 51 and run it twice.
Then, the number of block RAMs becomes 188.(However
the performance becomes half.)

 We have described a new level set algorithm
and its FPGA implementation.

 With our algorithm, it becomes possible to
detect all objects in the image, which is
difficult for previous level set algorithms.

 In addition, we have shown that real-time
processing is possible even with a small size
FPGA.

