K-Means Implementation on FPGA
for High-dimensional Data Using
Triangle Inequality

Zhongduo Lin, Charles Lo, Paul Chow

High-Performance Reconfigurable Computing Group

University of Toronto

September-13-12




Why K-means?

e One of the most widely used unsupervised
clustering algorithms in data mining and
machine learning
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Whats K-means

e Unsupervised vs Supervised

— Classes are predetermined or not

e A simple iterative clustering algorithm that
partitions a given dataset into k clusters
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Basic K-means
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e |) K initial means selected
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e 2) K clusters are created by
assigning points to the nearest
mean

* 3) The centroid of each clusters
becomes the new mean -’k fj

* 4) Repeat step 2 and 3 until S\.\_
convergence has been reached
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Why Triangle Inequality

e Big Data Era

— Data size

— Number of dimensions
— Number of clusters
e Optimization
— Kd-tree with filter algorithm

— Triangle inequality
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Triangle Inequality

o 7 < x + y X y
* X>Z-—Y
e If x<z/2 then x<y Z
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Triangle Inequality

e Zz< Xty

— X:pc3

— y:clc3

— z:pc3

— x+y: upper bound
* X>Z-—Y

— X: pc4

— y:c2c4

— z:pc2
— z-y: lower bound
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K-means with Triangle Inequality

» Keep the upper bound to the assigned
center: n

e Keep the lower bound to all the centers: kn
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K-means with Triangle Inequality

1. For points x and centers ¢ such that

e # o(z) && u(z) > Iz, c) Q& ulzx) > td(c(x).c)

compute d(x,c) and dyi, = mind(r, c), set Cpin to
the cluster with distance d,,;, to the point.

2. Ifany di‘mld[li:-ﬂ 1s computed in step 1, compute d|r, c(x))
if dix,c(x)) > d,, then assign o) = e,

3. For each center ¢, let m(c) be the mean of the points
assigned to .

4. For each point r and cenfgr ¢ _gssion
[{x,c) = max {l(x.c) —Jd(ec. m(c))]0}.
5. For each point , assign
w(r) =ulx) 4+ dimic(z)). clx))

6. Replace each center ¢ by m(c).
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Time Overhead of Triangle Inequality

e Distance between centers: d(c(x),c)

— Not implemented

e Distance between new centers and the old
ones: d(c, m(c))
— Parallel with updating bounds |
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Optimization for HW: square root

e Square root elimination

— Distance squared

- u(z) = u(z) + d(m(c(x)), c(x))

e bounds for (T & *y)ﬂ |

(x £y)? = 2? + 22y + 2.
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Optimization for HW: square root

1. Let 2y, = min {z*, y*} and 29, = max {x2. y*}

2. Rewrite LY a5 Tlmin * ‘n/-ﬁ' LY .-'lrj:ymr'n
3. Let: = lc}gg[:ﬂy,m-ﬂ] and j = lus_z:gli:r Yumax )

4

L]

LYapproxn = Llmin < {{331} + l}., |
where <€ 1s a shaft left operator
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Optimization for HW: square root

1. Let 2y, = min {z*, y*} and 29, = max {x2. y*}

2. Rewrite xy a8 TYmin X / TYmax / TYmin

3. Leti = lc}gg[:ﬂy,m-ﬂ] and j — lﬂf:‘:;g[ff IJ'mm-]'

N L Happrox n = Llmin < {{331} + l}.,

where <€ 1s a shaft left operator

—i+1
LYapprox.a = LYmin < ({j ;_I_ ])
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Optimization for HW: square root

e Ratio: x/y
e sum: (z+y)? dift (z—y)?
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Fig. 1. Approximation Error



Optimization for HW: square

e 8-bit square calculator for 6-LUT FPGA

52 = (STS.HSE,S,_LS:gSgS]_Su)H —
(s786 < 6 + 858483 <€ 3 + .qg,ql,q[}}g —
(s786° < 12| s58483° < 6| s25180° )+ |
{{USTE‘[—} X 555453} < ﬁ | {553453 X 8987 S[}}} < 4_|.
(0s786 X 828180) K 7
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Optimization for HW: square

e Comparison: 4-LUT

Table 1. Comparison between two square implementations

V6 Opt. 4] improvement
LUTs 38 59 35.6 % 6
Logic delay (ns) 3.734 4.524 17.5 %
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Hardware Platform

e ML605 Evaluation Board:
— XC6VLX240T
— 512 MB DDR3 (Max BW: 6.4GB)
— PCle interface (8-lane Gen 1)
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Interface Overview
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Fig. 2. HW Interface Overview

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto




Interface Overview

PCI BL} PCle Core

NS

Memory |~
Controller

<J“G HW /11 Y
Accelerator \17

Fig. 2. HW Interface Overview

_ £
€ 4ada gnels
e

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto




o I
= ficer Accumulator 0
- ree - m_ u
O Dist Acc _4 m )
._nuw _ Min Dist| |MinCluster| | ‘=
n— - * e
= . <
m o D_mﬂ}no m
_|n_,_ 1 Adder Tree "
= b s
- 3

— Enable FIFO q

Memory Request

Data from
Memory
Controller



HW Architecture
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HW Architecture
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Benchmarks: k=10, d=1024

* Mnist: gray scale picture of digits 0-9
— 28%28 to 32*32

— Initial centers: manually picked up

e Uniform Random (UR)

— No seed is set

wWN

— Initial centers: first 10 points
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Result: approximation

e Distance calculation ratio:

number of distance calculations with optimization
number of distance calculations without optimization

e ORI: original triangle inequality optimization
e APT: naive approximation 4

 AAPT: aggressive approximation
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Result: approximation
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HW experiment: cost

Table 2. Implementation result with optimization
Data Size 1024 | 4096 | 16384

e |0% more slice Luﬁl’c‘se LUTs | 44194 | 45021 | 43269

]  Registers | 22521 | 22600 | 22453
e 3.4% more registeisov 198 | 287 | 403

e BRAM!!

Table 3. Implementation result of baseline system

Data Size 1024 | 4096 | 16384 g

Slice LUTs 40466 | 40399 | 40455
Slice Registers | 21630 | 21640 | 21645
RAM 170 172 172
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HW experiment: speed

e Jotal time approximation

(50 + 32 + *‘fﬁjm kn) x I+ Np x ( Dim

* When n is big enough
(Ra + (1 — Rq) p&)T

e For 32000 MNIST data, R;= 12%. :
processing time: 0.23T, saving 77%
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HW experiment: speed

e SW platform:
— Intel Quad-core i5-2500 CPU, | thread
— 3.3GHz,4GB DDR2

e HW platform:
— |OOMHz y)
8

Table 4. Execution time of different implementations
data size | baseline sw | optimized sw | optimized hw

1024 807 ms 294 ms 5 ms
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Future Work

e Store the bounds in external memory

e Parallelism between different centers

e Better comparison with software
implementation
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