K-Means Implementation on FPGA
for High-dimensional Data Using
Triangle Inequality

Zhongduo Lin, Charles Lo, Paul Chow

High-Performance Reconfigurable Computing Group

University of Toronto

September-13-12

Why K-means?

e One of the most widely used unsupervised
clustering algorithms in data mining and
machine learning

f-.l..l[0 TOVLERLET ML

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Whats K-means

e Unsupervised vs Supervised

— Classes are predetermined or not

e A simple iterative clustering algorithm that
partitions a given dataset into k clusters

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Basic K-means

/

e |) K initial means selected

, P
[_CI
G
R
u
P

e 2) K clusters are created by
assigning points to the nearest
mean

* 3) The centroid of each clusters
becomes the new mean -’k fj

* 4) Repeat step 2 and 3 until S\._
convergence has been reached

September-13-12 High-Performance Reconfigurable Computing Group - University or ioronto

Why Triangle Inequality

e Big Data Era

— Data size

— Number of dimensions
— Number of clusters
e Optimization
— Kd-tree with filter algorithm

— Triangle inequality

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Triangle Inequality

o 7 < x + y X y
* X>Z-—Y
e If x<z/2 then x<y Z

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Triangle Inequality

e Zz< Xty

— X:pc3

— y:clc3

— z:pc3

— x+y: upper bound
* X>Z-—Y

— X: pc4

— y:c2c4

— z:pc2
— z-y: lower bound

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

K-means with Triangle Inequality

» Keep the upper bound to the assigned
center: n

e Keep the lower bound to all the centers: kn

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

K-means with Triangle Inequality

1. For points x and centers ¢ such that

e # o(z) && u(z) > Iz, c) Q& ulzx) > td(c(x).c)

compute d(x,c) and dyi, = mind(r, c), set Cpin to
the cluster with distance d,,;, to the point.

2. Ifany di‘mld[li:-ﬂ 1s computed in step 1, compute d|r, c(x))
if dix,c(x)) > d,, then assign o) = e,

3. For each center ¢, let m(c) be the mean of the points
assigned to .

4. For each point r and cenfgr ¢ _gssion
[{x,c) = max {l(x.c) —Jd(ec. m(c))]0}.
5. For each point , assign
w(r) =ulx) 4+ dimic(z)). clx))

6. Replace each center ¢ by m(c).

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Time Overhead of Triangle Inequality

e Distance between centers: d(c(x),c)

— Not implemented

e Distance between new centers and the old
ones: d(c, m(c))
— Parallel with updating bounds |

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Optimization for HW: square root

e Square root elimination

— Distance squared

- u(z) = u(z) + d(m(c(x)), c(x))

e bounds for (T & *y)ﬂ |

(x £y)? = 2? + 22y + 2.

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Optimization for HW: square root

1. Let 2y, = min {z*, y*} and 29, = max {x2. y*}

2. Rewrite LY a5 Tlmin * ‘n/-ﬁ' LY .-'lrj:ymr'n
3. Let: = lc}gg[:ﬂy,m-ﬂ] and j = lus_z:gli:r Yumax)

4

L]

LYapproxn = Llmin < {{331} + l}., |
where <€ 1s a shaft left operator

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Optimization for HW: square root

1. Let 2y, = min {z*, y*} and 29, = max {x2. y*}

2. Rewrite xy a8 TYmin X / TYmax / TYmin

3. Leti = lc}gg[:ﬂy,m-ﬂ] and j — lﬂf:‘:;g[ff IJ'mm-]'

N L Happrox n = Llmin < {{331} + l}.,

where <€ 1s a shaft left operator

—i+1
LYapprox.a = LYmin < ({j ;_I_])

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Optimization for HW: square root

e Ratio: x/y
e sum: (z+y)? dift (z—y)?

1000000 5

Approximation Error Vs Ratio

100000

10000 1 4 sum_naive

- diff_naive
V sum_aggressive 4
& diff_aggressive

Bfa}

1000 5

—

100

Emor

10

1 =

D 1 Lj L} 1 I n L]
1 0 100 Rﬂtiﬂ 1000 1 0000 100000

Fig. 1. Approximation Error

Optimization for HW: square

e 8-bit square calculator for 6-LUT FPGA

52 = (STS.HSE,S,_LS:gSgS]_Su)H —
(s786 < 6 + 858483 <€ 3 + .qg,ql,q[}}g —
(s786° < 12| s58483° < 6| s25180°)+ |
{{USTE‘[—} X 555453} < ﬁ | {553453 X 8987 S[}}} < 4_|.
(0s786 X 828180) K 7

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Optimization for HW: square

e Comparison: 4-LUT

Table 1. Comparison between two square implementations

V6 Opt. 4] improvement
LUTs 38 59 35.6 % 6
Logic delay (ns) 3.734 4.524 17.5 %

September-13-12 High-Performance Reconfigurable Computing Group -

University of Toronto

Hardware Platform

e ML605 Evaluation Board:
— XC6VLX240T
— 512 MB DDR3 (Max BW: 6.4GB)
— PCle interface (8-lane Gen 1)

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Interface Overview

PCI BL} PCle Core

%
fr

Memory |~
Controller

&

€ 4ada gn

<J“G HW /11 Y
|
Accelerator \17 ;

Fig. 2. HW Interface Overview

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Interface Overview

PCI BL} PCle Core

NS

Memory |~
Controller

<J“G HW /11 Y
Accelerator \17

Fig. 2. HW Interface Overview

_ £
€ 4ada gnels
e

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

o I
= ficer Accumulator 0
- ree - m_ u
O Dist Acc _4 m)
._nuw _ Min Dist| |MinCluster| | ‘=
n— - * e
= . <
m o D_mﬂ}no m
|n,_ 1 Adder Tree "
= b s
- 3

— Enable FIFO q

Memory Request

Data from
Memory
Controller

HW Architecture

Accumulator

E 3

a

Min Dist

Min Cluster

*

*

— Enable FIFO q

Memory Request

Dist Acc

:

LL
al

Adder Tree

|
L
|

————y———-

HD FIFO

—_—
Data from

Memory
Controller

Fig. 3. HA Architecture

HW Architecture

Enable FIFO i

Memory Request

Accumulator

, a

M

in Dist| [Min Cluster

¥ ¥

:

. LL
Dist Acc L

Adder Tree

z |l
|

|||||||||||||]

R it S
HD FIFO

Memory
Controller

—_—
Data from

Fig. 3. HA Architecture

Benchmarks: k=10, d=1024

* Mnist: gray scale picture of digits 0-9
— 28%28 to 32*32

— Initial centers: manually picked up

e Uniform Random (UR)

— No seed is set

wWN

— Initial centers: first 10 points

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Result: approximation

e Distance calculation ratio:

number of distance calculations with optimization
number of distance calculations without optimization

e ORI: original triangle inequality optimization
e APT: naive approximation 4

 AAPT: aggressive approximation

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Result: approximation

0.3
0.28
0.26
0.24
0.22

0.2+
0.18 -
0.16 9
0.14 4
0.12 4

0.1

o,
4 OR| 2/°
& APT (o)
samer 4%

22.7%

distance calculation ratio

L] 1
1000 10000 100000
Data Size

Fig. 4. Optimization performance for MNIST

0.85 4 5%
| ;\,\/‘? 79
7 L:\/ 4 OR|

=
1]
[]
1IN

(=]
(=]

=]

5 *APT 17.6%

6 - v V- AAPT

=]
2]

distance calculation ratio
o 5
[+,]

o
2 o
[]

I |
10000 100000
Data Size
Septeml >nto

Fig. 5. Optimization performance for UR

g

HW experiment: cost

Table 2. Implementation result with optimization
Data Size 1024 | 4096 | 16384

e |0% more slice Luﬁl’c‘se LUTs | 44194 | 45021 | 43269

] Registers | 22521 | 22600 | 22453
e 3.4% more registeisov 198 | 287 | 403

e BRAM!!

Table 3. Implementation result of baseline system

Data Size 1024 | 4096 | 16384 g

Slice LUTs 40466 | 40399 | 40455
Slice Registers | 21630 | 21640 | 21645
RAM 170 172 172

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

HW experiment: speed

e Jotal time approximation

(50 + 32 + *‘fﬁjm kn) x I+ Np x (Dim

* When n is big enough
(Ra + (1 — Rq) p&)T

e For 32000 MNIST data, R;= 12%. :
processing time: 0.23T, saving 77%

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

HW experiment: speed

e SW platform:
— Intel Quad-core i5-2500 CPU, | thread
— 3.3GHz,4GB DDR2

e HW platform:
— |OOMHz y)
8

Table 4. Execution time of different implementations
data size | baseline sw | optimized sw | optimized hw

1024 807 ms 294 ms 5 ms

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

Future Work

e Store the bounds in external memory

e Parallelism between different centers

e Better comparison with software
implementation

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

P]
G
R
U
b

September-13-12 High-Performance Reconfigurable Computing Group - University of Toronto

	K-Means Implementation on FPGA for High-dimensional Data Using Triangle Inequality
	Why K-means?
	Whats K-means
	Basic K-means
	Why Triangle Inequality
	Triangle Inequality
	Triangle Inequality
	K-means with Triangle Inequality
	K-means with Triangle Inequality
	Time Overhead of Triangle Inequality
	Optimization for HW: square root
	Optimization for HW: square root
	Optimization for HW: square root
	Optimization for HW: square root
	Optimization for HW: square
	Optimization for HW: square
	Hardware Platform
	Interface Overview
	Interface Overview
	HW Architecture
	HW Architecture
	HW Architecture
	Benchmarks: k=10, d=1024
	Result: approximation
	Result: approximation
	HW experiment: cost
	HW experiment: speed
	HW experiment: speed
	Future Work
	Slide Number 30

