
A BENIGN HARDWARE TROJAN ON FPGA-
BASED EMBEDDED SYSTEMS

Jason Zheng, Ethan Chen, Miodrag Potkonjak
Computer Science Department

University of California, Los Angeles

FPL2012, Oslo, Norway
August 31, 2012

Outline

Introduction

Preliminaries

Implementation

Benchmark Results

Summary

2

Benign Hardware Trojan Circuits

Traditionally a Hardware Trojan:

 Hidden structures and functionalities designed to wreak havoc in

circuits

Security Intent

 Ward off security attacks: cloning, reverse engineering, code

injection, etc.

Enabling Technology

 Process Variation

 Targeted Aging (NBTI)

3

Key Concept – Matched Uniqueness

Each instance of HW is:

 Functionally identical

 Unique delay signature
(process variation, aging)

Each instance of SW is

matched to the HW at

compilation.

Ensures:

 SW can be executed only on
the intended HW instance.

 HW only executes SW intended
for it.

4
Source: Wikipedia

Example: Many-Core Tiled Processor

A high-performance 64-

core system with static

schedule.

Each instance of the chip

has N disabled cores

chosen by BHT.

Compiler must know which

core is disabled to produce

working SW.

5

Proc

Core

0

Proc

Core

1

Proc

Core

2

Proc

Core

3

… Proc

Core

7

Proc

Core

8

Proc

Core

9

Proc

Core

10

Proc

Core

11

… Proc

Core

15

Proc

Core

16

Proc

Core

17

Proc

Core

18

Proc

Core

19

… Proc

Core

23

…

Proc

Core

56

Proc

Core

57

Proc

Core

58

Proc

Core

59

… Proc

Core

63

64-core Tiled Processor

Outline

Introduction

Preliminaries

Implementation

Benchmark Results

Summary

6

Process Variation

 Random and systematic factors in

the VLSI fabrication process lead to

intra- and inter-die variations in Vth,

Ioff, etc.

 As the feature size shrinks, the

degree of variation increases.

 Implication: two logic gates with

identical design parameters will not

have identical delay.

•Fig. 1 - Normalized Vth variation at 65nm [1]

•Fig. 2 – Avg. number of dopant atoms [2]

[1] W. Zhao, F. Liu, K. Agarwal, D. Acharyya, S. R. Nassif, K. J. Nowka, Y. Cao, "Rigorous

Extraction of Process Variations for 65-nm CMOS Design," Semiconductor Manufacturing, IEEE

Transactions on , vol.22, no.1, pp.196-203, Feb. 2009.

[2] K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W.-K. Shih, S. Sivakumar, G. Taylor, P.

VanDerVoorn, and K. Zawadzki, “Managing Process Variation in Intel’s 45-nm CMOS technology,”

Intel Tech . J., vol. 12, no. 2, pp. 93–110, Jun. 2008.

Negative Bias Temperature Instability (NBTI)

NBTI is an aging process that

primarily affects PMOS

devices.

When Vgs is negative for a

prolonged period of time,

interface traps are created

and negatively affects

threshold voltage (Vth).

As a result, propagation

delay and leakage current

increases.

Source: Wikipedia

Source: Wikipedia

Outline

Introduction

Preliminaries

Implementation

Benchmark Results

Summary

9

FPGA Implementation: OpenRISC OR1200

 5-stage,32-bit general purpose

processor.

 32 GPRs, statically scheduled

by compiler.

 Our addition: BHT embedded

within the GPR write-back.

10
Source: Opencores.org

FPGA Implementation: Resource and Performance

Target platform:

 Digilent Atlys board

 Spartan-6 FPGA (45-nm)

Toolchain:

 Xilinx ISE 13.1 toolchain

Clock rate: 50MHz

11

FPGA Implementation: BHT Delay Logic

12

 BHT delay arbiters measure subtle

delay differences in the silicon.

 Delay signature forms at

manufacturing time by Process

Variation.

 NBTI can also alter the relative

delay.

 OR1200 Layout with BHT on Spartan-6 FPGA

Process Variation

Figure left:

 64 arbiter outputs from two

Spartan-6 FPGAs over 1024

samples.

Arbiters 21-63

 Strong Process Variation

influence.

 Prime candidate for BHT

 Stability can be improved by

voting logic or digital filter.

13

Software Implementation

Baseline toolchain – GCC, OR1Ksim (simulator)

Compiler modifications

 -mregistermask compiler flag

 A 32-bit mask parameter passed to the compiler

 Indicates which GPR is disabled to GPR scheduler

Simulator modifications

 CPU configuration flag disable_regs

 Disables selected GPRs in simulation

14

Outline

Introduction

Preliminaries

Implementation

Benchmark Results

Summary

15

Benchmarks

Objectives

 Show that the OR1200 BHT modification works as expected.

 Show that the toolchain modifications work as expected.

 Measure runtime overhead as a result of fewer available GPRs.

Chosen embedded benchmarks:

 Dhrystone (synthetic)

 CoreMark (synthetic)

 MiBench

 zlib

16

Benchmarks, continued

 Benchmark results from OR1200 on Spartan-6.

 # of GPRs is reduced from 32 to 16.

 Highest impact is 8% (zlib with 22 GPRs)

 Dhry anomaly probably due to compiler optimization.

 zlib non-monotonic results: change of compiler optimization strategies due to # of GPR change.

17

Summary

BHT works by creating HW instances with unique delay

signatures and SW instances that understand them.

HW and SW will only work correctly when shared

signatures match.

Successfully implementation in GPR write-back logic in

OR1200 General Purpose Processor.

Synthetic and realistic benchmarks show a small overhead

due to reduced number of GPRs to compiler.

18

Questions

Security Model?

 Now: Software copying

 Next: Exponentially long code reversing + negligible overhead (PPUF)

FPGA specific?

 Now: Nothing

 Next: Mapping to take maximal advantage, device aging and

characterization

Architecture?

 Now: General purpose processor

 Next: ASIC and FPGA

19

