UC COMPUTER SCIENCE DEPARTMENT

A BENIGN HARDWARE TROJAN ON FPGA-
BASED EMBEDDED SYSTEMS

Jason Zheng, Ethan Chen, Miodrag Potkonjak
Computer Science Department
University of California, Los Angeles

FPL2012, Oslo, Norway
August 31, 2012

Outline

¢ Introduction

¢ Preliminaries

¢ Implementation

¢ Benchmark Results

¢ Summary

Benign Hardware Trojan Circuits

¢ Traditionally a Hardware Trojan:

» Hidden structures and functionalities designed to wreak havoc in
circuits

Security Intent

= Ward off security attacks: cloning, reverse engineering, code
injection, etc.

¢ Enabling Technology

= Process Variation
= Targeted Aging (NBTI)

Key Concept - Matched Uniqueness

¢ Each instance of HW is:

» Functionally identical

* Unique delay signature
(process variation, aging)

¢ Each instance of SW is
matched to the HW at
compilation.

¢ Ensures:

= SW can be executed only on
the intended HW instance.

= HW only executes SW intended
for it.

Source: Wikipedia |

Example: Many-Core Tiled Processor

¢ A high-performance 64-
core system with static
schedule.

¢ Each instance of the chip
has N disabled cores
chosen by BHT.

¢ Compiler must know which
core is disabled to produce
working SW.

ascE &
HEmE &
)
C B

64-core Tiled Processor

Outline

2

¢ Preliminaries

¢ Implementation

¢ Benchmark Results

¢ Summary

Process Variation

¢ Random and systematic factors in
the VLSI fabrication process lead to
intra- and inter-die variations in V,,
s etc.

¢ As the feature size shrinks, the
degree of variation increases.

¢ Implication: two logic gates with
identical design parameters will not
have identical delay.

[1]W. Zhao, F. Liu, K. Agarwal, D. Acharyya, S. R. Nassif, K. J. Nowka, Y. Cao, "Rigorous
Extraction of Process Variations for 65-nm CMOS Design," Semiconductor Manufacturing, IEEE
Transactionson, vol.22, no.1, pp.196-203, Feb. 2009.

[2] K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W.-K. Shih, S. Sivakumar, G. Taylor, P.
VanDerVoorn, and K. Zawadzki, “Managing Process Variation in Intel’s 45-nm CMOS technology,”

Intel Tech . J., vol. 12, no. 2, pp. 93-110, Jun. 2008.

254
[Extracted Data V,,:0=5% of mean
| e Gaussian Fit W=0.375um, L=Min L

204
15
g
w
[=]
o 104

0.75 0.80 0.85 0.90 0.95 1.00 1.05 110 115 1.20 1.25
Normalized Vy,

*Fig. 1 - Normalized V, variation at 65nm [1]

100000 \
-
S £ 10000
ES e
=]
> . 1000
c
g ©
S 100
& o
g (]
<« S 10 \
1
10000 1000 100 10 1

Technology Node (nm)
*Fig. 2 — Avg. number of dopant atoms [2]

Negative Bias Temperature Instability (NBTI)

¢ NBTl is an aging process that
primarily affects PMOS wos pwos
devices. ‘

¢ When Vgs is negative for a
prolonged period of time,
interface traps are created

Source: Wikipedia

and negatively affects vad
threshold voltage (Vth). iy

« As a result, propagation g i ?
delay and leakage current Ves

increaSGS. Source: Wikipedia

Outline

2

2

¢ Implementation

¢ Benchmark Results

¢ Summary

FPGA Implementation: OpenRISC OR1200

¢ 5-stage,32-bit general purpose

ORI1200 CPU
Instr. Instr. - processor.
MMU Cache .
¢ 32 GPRs, statically scheduled
Fetch Timer by compiler.
I
Decod 5 agn
coes D|| Fewer |/g | o Ouraddition: BHT embedded
gmt. = . . .
Execute S 0 within the GPR write-back.
Memory P Debug I/F % | tnstruction pecose |
o
Writeback Interrupts =
| [Delay . M_ e
Data Data o Arbiter_{i”y- Register
MMU Cache : -
I:I Optional/Configurable . Minimal configuration) DIN

Source: Opencores.org

FPGA Implementation: Resource and Performance

Resource Use Count | Use Percentage
D-Flipflop 5718 10%
LUTs 10918 40%
Slices 3661 53%
BRAMs 87 37.5%
DSP48A1s 4 6%

¢ Target platform:

= Digilent Atlys board
= Spartan-6 FPGA (45-nm)

¢ Toolchain:
= Xilinx ISE 13.1 toolchain

¢ Clock rate: 50MHz

11

FPGA Implementation: BHT Delay Logic

OR1200 Layout with BHT on Spartan-6 FPGA

A
__/-— Arbiter

¢ BHT delay arbiters measure subtle
delay differences in the silicon.

¢ Delay signature forms at
manufacturing time by Process
Variation.

¢ NBTI can also alter the relative
delay.

12

Process Variation
¢ Figure left:

= 64 arbiter outputs from two

1200 . .
S EES;S:W Spartan-6 FPGAs over 1024
1000 P f K]w\/ 1‘ iR i samples.
g 800 | Q ' ' ' ' | '
: o 0 L e Arbiters 21-63
§ o) il | | = Strong Process Variation
oo | | \ \ influence.
0 . AL e LU L LU = Prime candidate for BHT
0 10 20 30 40 50 80

Arbiter Index (0-63)

= Stability can be improved by
voting logic or digital filter.

13

Software Implementation
¢ Baseline toolchain - GCC, OR1Ksim (simulator)

¢ Compiler modifications

» -mregistermask compiler flag
= A 32-bit mask parameter passed to the compiler
= Indicates which GPR is disabled to GPR scheduler

¢ Simulator modifications

= CPU configuration flag disable_regs

= Disables selected GPRs in simulation

14

Outline
TS
TS

¢

¢ Benchmark Results

¢ Summary

15

Benchmarks

¢ Objectives
= Show that the OR1200 BHT modification works as expected.

= Show that the toolchain modifications work as expected.

= Measure runtime overhead as a result of fewer available GPRs.

¢ Chosen embedded benchmarks:
* Dhrystone (synthetic)
= CoreMark (synthetic)
= MiBench
= zlib

16

Benchmarks, continued

Normalized Run Time vs. Number of GPRs

110
W:2GPRs M 28GPRs [24GPRs M 22GPRs M 20GPRs M 18GPRs M 16 GPRs

105

100

Normalized Run Time

95

90 — =
MiBench (basic MiBench (fft) MiBench (bit count) MiBench (string dhry zlib coremark

math) search)

Benchmark results from OR1200 on Spartan-6.

of GPRs is reduced from 32 to 16.

Highest impact is 8% (zlib with 22 GPRs)

Dhry anomaly probably due to compiler optimization.

zlib non-monotonic results: change of compiler optimization strategies due to # of GPR change.

® 6 ¢ o o

17

Summary

¢ BHT works by creating HW instances with unique delay
signatures and SW instances that understand them.

¢ HW and SW will only work correctly when shared
signatures match.

¢ Successfully implementation in GPR write-back logic in
OR1200 General Purpose Processor.

+ Synthetic and realistic benchmarks show a small overhead
due to reduced number of GPRs to compiler.

18

Questions

¢ Security Model?

= Now: Software copying
= Next: Exponentially long code reversing + negligible overhead (PPUF)

¢ FPGA specific?
= Now: Nothing

= Next: Mapping to take maximal advantage, device aging and
characterization

¢ Architecture?

= Now: General purpose processor
= Next: ASIC and FPGA

19

