
A BENIGN HARDWARE TROJAN ON FPGA-
BASED EMBEDDED SYSTEMS

Jason Zheng, Ethan Chen, Miodrag Potkonjak
Computer Science Department

University of California, Los Angeles

FPL2012, Oslo, Norway
August 31, 2012

Outline

Introduction

Preliminaries

Implementation

Benchmark Results

Summary

2

Benign Hardware Trojan Circuits

Traditionally a Hardware Trojan:

 Hidden structures and functionalities designed to wreak havoc in

circuits

Security Intent

 Ward off security attacks: cloning, reverse engineering, code

injection, etc.

Enabling Technology

 Process Variation

 Targeted Aging (NBTI)

3

Key Concept – Matched Uniqueness

Each instance of HW is:

 Functionally identical

 Unique delay signature
(process variation, aging)

Each instance of SW is

matched to the HW at

compilation.

Ensures:

 SW can be executed only on
the intended HW instance.

 HW only executes SW intended
for it.

4
Source: Wikipedia

Example: Many-Core Tiled Processor

A high-performance 64-

core system with static

schedule.

Each instance of the chip

has N disabled cores

chosen by BHT.

Compiler must know which

core is disabled to produce

working SW.

5

Proc

Core

0

Proc

Core

1

Proc

Core

2

Proc

Core

3

… Proc

Core

7

Proc

Core

8

Proc

Core

9

Proc

Core

10

Proc

Core

11

… Proc

Core

15

Proc

Core

16

Proc

Core

17

Proc

Core

18

Proc

Core

19

… Proc

Core

23

…

Proc

Core

56

Proc

Core

57

Proc

Core

58

Proc

Core

59

… Proc

Core

63

64-core Tiled Processor

Outline

Introduction

Preliminaries

Implementation

Benchmark Results

Summary

6

Process Variation

 Random and systematic factors in

the VLSI fabrication process lead to

intra- and inter-die variations in Vth,

Ioff, etc.

 As the feature size shrinks, the

degree of variation increases.

 Implication: two logic gates with

identical design parameters will not

have identical delay.

•Fig. 1 - Normalized Vth variation at 65nm [1]

•Fig. 2 – Avg. number of dopant atoms [2]

[1] W. Zhao, F. Liu, K. Agarwal, D. Acharyya, S. R. Nassif, K. J. Nowka, Y. Cao, "Rigorous

Extraction of Process Variations for 65-nm CMOS Design," Semiconductor Manufacturing, IEEE

Transactions on , vol.22, no.1, pp.196-203, Feb. 2009.

[2] K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W.-K. Shih, S. Sivakumar, G. Taylor, P.

VanDerVoorn, and K. Zawadzki, “Managing Process Variation in Intel’s 45-nm CMOS technology,”

Intel Tech . J., vol. 12, no. 2, pp. 93–110, Jun. 2008.

Negative Bias Temperature Instability (NBTI)

NBTI is an aging process that

primarily affects PMOS

devices.

When Vgs is negative for a

prolonged period of time,

interface traps are created

and negatively affects

threshold voltage (Vth).

As a result, propagation

delay and leakage current

increases.

Source: Wikipedia

Source: Wikipedia

Outline

Introduction

Preliminaries

Implementation

Benchmark Results

Summary

9

FPGA Implementation: OpenRISC OR1200

 5-stage,32-bit general purpose

processor.

 32 GPRs, statically scheduled

by compiler.

 Our addition: BHT embedded

within the GPR write-back.

10
Source: Opencores.org

FPGA Implementation: Resource and Performance

Target platform:

 Digilent Atlys board

 Spartan-6 FPGA (45-nm)

Toolchain:

 Xilinx ISE 13.1 toolchain

Clock rate: 50MHz

11

FPGA Implementation: BHT Delay Logic

12

 BHT delay arbiters measure subtle

delay differences in the silicon.

 Delay signature forms at

manufacturing time by Process

Variation.

 NBTI can also alter the relative

delay.

 OR1200 Layout with BHT on Spartan-6 FPGA

Process Variation

Figure left:

 64 arbiter outputs from two

Spartan-6 FPGAs over 1024

samples.

Arbiters 21-63

 Strong Process Variation

influence.

 Prime candidate for BHT

 Stability can be improved by

voting logic or digital filter.

13

Software Implementation

Baseline toolchain – GCC, OR1Ksim (simulator)

Compiler modifications

 -mregistermask compiler flag

 A 32-bit mask parameter passed to the compiler

 Indicates which GPR is disabled to GPR scheduler

Simulator modifications

 CPU configuration flag disable_regs

 Disables selected GPRs in simulation

14

Outline

Introduction

Preliminaries

Implementation

Benchmark Results

Summary

15

Benchmarks

Objectives

 Show that the OR1200 BHT modification works as expected.

 Show that the toolchain modifications work as expected.

 Measure runtime overhead as a result of fewer available GPRs.

Chosen embedded benchmarks:

 Dhrystone (synthetic)

 CoreMark (synthetic)

 MiBench

 zlib

16

Benchmarks, continued

 Benchmark results from OR1200 on Spartan-6.

 # of GPRs is reduced from 32 to 16.

 Highest impact is 8% (zlib with 22 GPRs)

 Dhry anomaly probably due to compiler optimization.

 zlib non-monotonic results: change of compiler optimization strategies due to # of GPR change.

17

Summary

BHT works by creating HW instances with unique delay

signatures and SW instances that understand them.

HW and SW will only work correctly when shared

signatures match.

Successfully implementation in GPR write-back logic in

OR1200 General Purpose Processor.

Synthetic and realistic benchmarks show a small overhead

due to reduced number of GPRs to compiler.

18

Questions

Security Model?

 Now: Software copying

 Next: Exponentially long code reversing + negligible overhead (PPUF)

FPGA specific?

 Now: Nothing

 Next: Mapping to take maximal advantage, device aging and

characterization

Architecture?

 Now: General purpose processor

 Next: ASIC and FPGA

19

