Exploring the Latency-Resource Trade-oft

for the Discrete Fourier Transtorm on the FPGA
Gordon Inggs, David B. Thomas and Simon Winberg

Imperial College London and University of Cape Town

—

o
—
N

The DFT, FFT and Amadahl's Law

The Cooley-Tukey Radix 2 Fast Fourier Transform 1s a well-known
optimisation of the Discrete Fourier Transform. The FFT trades a linear
increase 1n the number of sequential operations for an exponential
reduction 1n the arithmetic operations required.

w
N

—

(@)
[l
-

Radix 2 FFT
ﬁ Exponential

difference in
total
operations

Linear
difference
in latency

W
o

Latency (Arithmetic Operations)
= = N
! v 9
Size (Arithmetic Operations)
e e
o (@) o
9] (@) N

o

=

o
w

—

o
[t
o

Exponentially increasing size

N

(92|
[
o

(o]

=
o
0o

Radix 2FFT '

As predicted by Amadahl's Law, increasing sequential operations
results in an unavoidable increase in the absolute latency required to
compute a single DFT. For certain applications such as real-time radar

target tracking, the absolute latency of a DFT needs to be minimised. DFT Size DFT Size
Absolute Latency Total Operations

U1
=
o

N

103 104 10° 10°

=
o
N

103 104 10° 10°

—
o
N

—

o
[y
N

Proposed Flexible Radix FFT Algorithm =

The key to the FFT optimisation is that a N point DFT is decomposed >
into log,(N) 2 point DFTs, taking advantage of cyclical relationships in

—

o
—
[

D=256

B
o <
© o

=
o

oo
(O Ny

the complex coeftficients by which the discrete signal 1s multiplied.

TITT
ELEL

[
o
N

157
Radix 2 FFT

=
o
(o))

A flexible radix algorithm 1s proposed which decomposes a N point
DFT down to a user-defined value, D, resulting in log,(N/D) D point

107

=
o
%,

Latency (Arithmetic Operations)
Size (Arithmetic Operations)

U1
[
o

N

DFTs, providing control of the tradeoff between resources used and
absolute latency in the DFT.

o

=

o
w

104 10° 1,1 x10°
DFT Size DFT Size

Absolute Latency Total Operations

—
o
N
—
o
w
=
o
KN
—
O L
Ul
—
o
)]
—
o
N
=
o
w

Experimental Implementation
A parameterisable implementation of the flexible radix algorithm was created using
MyHDL (a Python-based HDL). The computing device targeted was the Rhino
Platform, a Software Defined Radio research platform which has a Xilinx Spartan 6
SLX1350T for compute purposes and Texas Instruments OMAP management processor.

To evaluate the algorithm, permutations of implementations were generated for DFTS |
of size 16-256 points, for the configuration parameter D set between 2 and /6. In order
to establish whether a tradeoff was established, the resource utilisation and absolute N
latency were measured for each permutation.

Operations Graph of Proposed Algorithm Rhino Platform in Test Rig

Results

With D=16, the 256 point implementation of the algorithm running at 142MHz on the Rhino platform is
14% taster in computing a single DFT than the corresponding radix 4 Xilinx LogiCore on the same FPGA.
This implementation does however use 4 times the resources of the Xilinx LogiCore.

As 1llustrated below, the results across the experiment illustrate a regular and predictable trade off between
absolute latency and resource utilisation, allowing for greater control of this tradeoft than a regular FFT.

1607
1407 N=128
g 120+
-
2 100t
5
= N=64
= 80+
) N=16
O
5 60 N=32
@)
D
(a'd 40_
20! ~A—4
84 05 1 2 3 4 5 10 21

Latency (microseconds)

Absolute Latency-Resource Tradeoff Curves

Future Work Ofns0

~ Git repository of the MyHDL-based

The two main directions for future work: r,.‘ Ly et :
: T o Wl Toolflow for the Rhino Platform,
1) Refining the MyHDL implementation framework, particularly with respect to resource utilisation. b e g . .
. e . N “ R .l;-& used to implement the algorithm.
2) Introducing finer control over optimisations such as operation pipelining O3 =

(Acknowledgements

The South African National Defense Force's Project Ledger, the South African
National Research Foundation, the Oppenheimer Memorial Trust and the South
African Square Kilometer Array

Imperial College

