
The DFT, FFT and Amadahl's Law

Proposed Flexible Radix FFT Algorithm

Results

Acknowledgements

Exploring the Latency-Resource Trade-off
for the Discrete Fourier Transform on the FPGA

Gordon Inggs, David B. Thomas and Simon Winberg

Imperial College London and University of Cape Town

Future Work

Experimental Implementation

106102 103 104 105

37

0

5

10

15

20

25

30

DFT Size

La
te

nc
y

(A
ri

th
m

et
ic

 O
pe

ra
tio

ns
)

DFT

Radix 2 FFT

!"!!"" !"# !"$!"%

!"&"

!"#
!"$
!"%
!"!
!"'
!"(
!")
!"&*
!"&&

#$%&'()*

'()
*&
+,
-(.
/0

*.
(1&
23
*-
4.
(5
67
8

94:(;&<$$%

#$%

Absolute Latency Total Operations

The Cooley-Tukey Radix 2 Fast Fourier Transform is a well-known
optimisation of the Discrete Fourier Transform. The FFT trades a linear
increase in the number of sequential operations for an exponential
reduction in the arithmetic operations required.

As predicted by Amadahl's Law, increasing sequential operations
results in an unavoidable increase in the absolute latency required to
compute a single DFT. For certain applications such as real-time radar
target tracking, the absolute latency of a DFT needs to be minimised.

The key to the FFT optimisation is that a N point DFT is decomposed
into log2(N) 2 point DFTs, taking advantage of cyclical relationships in
the complex coefficients by which the discrete signal is multiplied.

A flexible radix algorithm is proposed which decomposes a N point
DFT down to a user-defined value, D, resulting in log2(N/D) D point
DFTs, providing control of the tradeoff between resources used and
absolute latency in the DFT. !"#!"$!"% !"& !"'

%(

"

'

!"

!'

$"

$'

%"

)*+,-./0

12
30
45
6,7
89
.3:
;
03
.5,
<=
09
23
.>
4?
@ A2B.C,$,**+

)*+

)DE
)D!#
)D#&
)D$'#

Absolute Latency

!"!# !$!!$" !$# !$$!$%

!$&"

!$#
!$$
!$%
!$!
!$'
!$(
!$)
!$&*
!$&&

%&'()*+,

)*+
,(
-.
/*0
12

,0
*3(
45
,/
60
*7
89
:

;6<*=(>(&&'

%&'

%?@
%?!A
%?AB
%?>CA

Total Operations

!"#$% " "##$& ! ' % &

"(#

#

!#

%#

(#

)#

"##

"!#

"%#

*+,-./01234/567-/6.879

:-
76
;5
/-
1<
,4=
47+
,46
.1
2>
9

?@"(
?@'!

?@(%

?@"!)
?@!&(

Absolute Latency-Resource Tradeoff Curves

A parameterisable implementation of the flexible radix algorithm was created using
MyHDL (a Python-based HDL). The computing device targeted was the Rhino
Platform, a Software Defined Radio research platform which has a Xilinx Spartan 6
SLX150T for compute purposes and Texas Instruments OMAP management processor.

 To evaluate the algorithm, permutations of implementations were generated for DFTs
of size 16-256 points, for the configuration parameter D set between 2 and 16. In order
to establish whether a tradeoff was established, the resource utilisation and absolute
latency were measured for each permutation.

Operations Graph of Proposed Algorithm

The South African National Defense Force's Project Ledger, the South African
National Research Foundation, the Oppenheimer Memorial Trust and the South
African Square Kilometer Array

Git repository of the MyHDL-based
Toolflow for the Rhino Platform,
used to implement the algorithm.

The two main directions for future work:
1) Refining the MyHDL implementation framework, particularly with respect to resource utilisation.
2) Introducing finer control over optimisations such as operation pipelining

With D=16, the 256 point implementation of the algorithm running at 142MHz on the Rhino platform is
14% faster in computing a single DFT than the corresponding radix 4 Xilinx LogiCore on the same FPGA.
This implementation does however use 4 times the resources of the Xilinx LogiCore.

As illustrated below, the results across the experiment illustrate a regular and predictable trade off between
absolute latency and resource utilisation, allowing for greater control of this tradeoff than a regular FFT.

Rhino Platform in Test Rig

Key

1

2

log2(N)

N

DFT

DFT

DFT

DFT

D

D

D

D

2

N/2

N/2

N/4

N/4

N/4

N/4

2D

D2D

D

D

D

Reordering
N

Decompose
Operation

Direct
Operation

log2(N)

Linear
difference
in latency

Exponential
difference in

total
operations

Exponentially increasing size

