
An Open-Source Design and Validation
Platform for Reconfigurable Systems
Alessandra Bonetto, Andrea Cazzaniga, Gianluca Durelli, Christian Pilato,

Donatella Sciuto, Marco D. Santambrogio

Politecnico di Milano - Dipartimento di Elettronica ed Informazione Milano (Italy)
{bonetto, acazzaniga, pilato, sciuto, santambr}@elet.polimi.it, gianluca.durelli@mail.polimi.it

Abstract

Reconfigurable computing is a hot topic for research, as the possibilities and the technology offered by the reconfigurable devices improve year after year both in terms
of available configurable logic resources and the possibilities offered to exploit them. This has led CAD tools to grow both in complexity and effectiveness. The
expertise required to develop and test a complete system-on-chip using vendors tools has subsequently increased, forcing some designers to create their own tools as
support to official development flows. Within this field quite few works have been developed, with respect to the huge effort that has been spent in the exploitation of
architectural designs.
ReBit is an open-source tool able to help the designer in exploring different placement solutions in the architecture refinement process and in testing the correct
execution of an application on a real device.

Framework Interfaces and Panels

ReBit is composed by several different panels, that make possible for the user to manage bitstreams and UCF and to schedule and floor place an application, starting
from its task graph.

I Project description: panel to manage input files.
I Area Constraints: panel to check if any combination of partial bitstreams

generates an area conflict.
I Relocation: used to compute and visualize all the possible placements to

relocate a partial bitstream.
I UCF validation: this panel checks an UCF file for common errors.
I UCF visualization: graphical visualization of UCF areas constraints.
I Scheduling: schedules an partitioned application TG using a specific algorithm.
I Floorplacing: floorplaces a scheduled application to generate a compliant UCF.

Project
Description

Area Constraints Relocation

UCF Validation UCF Visualization

Scheduling Floorplacing

ReBit Framework

Bitstream Panels Application Panels UCF Panels

Architecture
XML File

Initial UCF File

Application
XML File

Partial/Full
Bitstreams

Updated UCF File

Updated Application
XML File

Inputs Outputs

Applicative Scenarios

Validation of a manually generated system
Already generated bitstreams and/or UCF files
are checked for possible errors.

Validation of an application
An hardware application is tested to
verify whether the code execution is
correct on a real device.

Custom algorithms verification
A custom scheduling or floor placing algorithm is easily integrated
inside ReBit thanks to the presence of several API and data
structures, e.g. to read an XML file or to update an UCF file.

Use Cases

Testing Application : Canny edge detection algorithm. The application execution is composed of four main steps: a gray scale conversion algorithm (GS), a
Gaussian blur filter (GB), an edge detection filter using Laplace kernel (ED) and finally a threshold phase (TH).

Partitioning : We have decided to split the two filters (GB and ED) into four
parallel nodes that operate separately on each quarter image. The application is thus
partitioned into 10 different tasks, corresponding to 10 different task graph nodes.

Input data : Estimated execution, reconfiguration times and area occupations.

Task Execution Time [cycles] Reconfig Time [cycles] Slices
GS 354853 220376 5120

GB i 90434 310745 3613
ED i 78234 290297 2723
TH 190754 160176 3224

New Algorithm Pseudocode : Reconfigurable Aware Scheduling

in ReBit (ASAP and ALAP) are not resource constrained, a
designer may want to implement a scheduling custom algo-
rithm that takes into consideration a fixed number of recon-
figurable areas. Let AREAS be the vector containing these
areas, the scheduling behavior is reported in Algorithm 1.

Algorithm 1 Reconfigurable-aware scheduling algorithm
1: while there are still tasks to be scheduled do
2: area = select(AREAS)
3: if free(area) then
4: time = ASAP (t, area)
5: else
6: reconfigure(area)
7: time = ASAP (t, area)
8: end if
9: end while

We have decided to integrate this scheduling algorithm
directly into the task graph class. To schedule a task graph
using this technique, the method is called computeRecSchedul-
ing and it takes as argument a fixed number of areas. At first,
the application task graph is filled using the addNode and
addEdge functions, using the information retrieved from the
XML file. Then, the graph nodes are cleared from previ-
ously computed scheduling times and they are set in a topo-
logical order, using the corresponding APIs. The number
of areas and the availability of each area are taken into con-
sideration. If there are still areas not configured, tasks are
scheduled using the ASAP algorithm. If this is not the case,
the scheduling time is computed as:

Tstart = max{(Tfree + Treconf), Tdep} (1)

where Tfree is the minimum time when an area becomes
ready to be reconfigured, Treconf is the time needed to re-
configure the task and Tdep is the time when all parent nodes
have finished their execution. Nodes scheduling times are
updated consequently and it is possible to print the schedul-
ing using the printSchedule function.

Figure 1 shows the results of the execution of the edge
detector application, scheduled using the reconfigurable aware
algorithm.

5. CONCLUSION

In this paper we have proposed ReBit, an open-source plat-
form to help the user in the verification process of hardware
applications. Different possible usages have been proposed,
to explore different placements to optimize an architecture
performances, to graphically visualize the results of a floor
placement, to modify graphically an existing UCF or to test
an application behavior without having to deal with schedul-
ing management. In addition, it is possible to customize the
tool adding new algorithms or features, exploiting the exist-
ing data structures and public APIs.

GS

GB_0 GB_1 GB_2 GB_3

TH

ED_0

ED_1 ED_2 ED_3

0

354853

645110

735150

Starting Time
[clock cycles]

813384

Area 0 Area 1 Area 2 Area 3 Area 4

Fig. 1. Execution using the reconfigurable aware schedule
and five areas

Acknowledgments
This work was partially funded by the European Commis-
sion in the context of the FP7 FASTER project (#287804).

6. REFERENCES

[1] Xilinx Inc., PlanAhead User Guide, Xilinx Inc., 2012.

[2] S. Guccione, D. Levi, and P. Sundararajan, “Jbits: Java based
interface for reconfigurable computing,” in SPIE Proceedings,
vol. 3526, 1998.

[3] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and
M. French, “Torc: towards an open-source tool flow,” in Pro-
ceedings of the 19th ACM/SIGDA international symposium on
Field programmable gate arrays (FPGA ’11), 2011, pp. 41–
44.

[4] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson,
and B. Hutchings, “Rapidsmith: Do-it-yourself cad tools for
xilinx fpgas,” in Field Programmable Logic and Applications
(FPL), 2011 International Conference on, sept. 2011, pp. 349
–355.

[5] V. Betz and J. Rose, “Vpr: A new packing, placement and
routing tool for fpga research,” in Proceedings of the 7th Inter-
national Workshop on Field-Programmable Logic and Appli-
cations, ser. FPL ’97, 1997, pp. 213–222.

[6] M. Santambrogio, A. Cazzaniga, A. Bonetto, and D. Sciuto,
“Rebit: A tool to manage and analyse fpga-based reconfig-
urable systems,” in Parallel and Distributed Processing Work-
shops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, may 2011, pp. 220 –227.

[7] X. Inc., “Planahead user guide,” Xilinx Inc., Tech. Rep. ug632,
December 2009.

[8] ——, “Embedded system tools reference manual, edk 12.1,”
Xilinx Inc., Tech. Rep. ug111, April 2010.

[9] J. Wu, J. Sun, and W. Liu, “Design and implementation of
video image edge detection system based on fpga,” in 3rd In-
ternational Congress on Image and Signal Processing (CISP
2010), vol. 1, oct. 2010, pp. 472 –476.

Results : Starting time and tasks mapping of each task, using the
Reconfigurable aware algorithm with the availability of 5 reconfigurable areas.
Note that the number of available areas is an algorithm input.

GS

GB_0 GB_1 GB_2 GB_3

TH

ED_0

ED_1 ED_2 ED_3

0

354,853

645,110

735,150

Starting Time
[clock cycles]

813,384

Area 0 Area 1 Area 2 Area 3 Area 4

(a)

ED
0

A0 A1 A2 A3 A4
0

354,853

645,110

813,384

[clock cycles]

GS

GB
0

ED
1

ED
2

ED
3

TH

1,004,272

444,853

735,150
723,334

605,929

GB
3

(b)

Execution time
Reconfiguration time

GB
2

GB
1

ReBit is available at http://code.google.com/p/rebit/

FPL 2012 Oslo, Norway August 29-31 2012 ReBit is available at http://code.google.com/p/rebit/

http://code.google.com/p/rebit/
http://code.google.com/p/rebit/

