
A Region Merging

Approach for Image

Segmentation On FPGA

Khac Trieu DANG BA and

Tsutomu MARUYAMA

Introduction

• Image segmentation is one of the most important

tasks in the image processing

• In the segmentation based on the mean-shift, k-means

and so on, the image is once over-segmented, and

then the small regions are merged

• We propose a region merging algorithm for

hardware systems, in which the data are not

managed strictly, and the redundant computation

caused by this loose management is hidden by the

pipelined and parallel processing.

Tulip (original)

Tulip (region-merged)

Tulip (mean-shift)

Mean-shift (over-segmentation)
 &
region merging

Region merging

For each region labeled ’u’, make a list lc(′u′)

which holds the regions contiguous to ’u’

List up all pairs of regions (’u’, ’v’) which are

contiguous each other.

Calculate the distance between the two regions

in the pairs using a given function f.

Start

Choose the pair which gives the minimum

distance, and merge the two regions.

Update lc of the merged regions.

Minimum distance

 < threshold

Yes

Finish

No

Our Approach

Scan image, and give unique labels to regions.
Put regions which consist of only one pixel aside.

Scan the image again, and for each region ‘u’, generate a
list of its neighbor regions lc(′u′).
Calculate the distance between two contiguous regions
and sort the pairs according to their distances.

Merge two regions repeatedly according to their distances
(from the closer one).
Update lc(′u′) when ’u’ and ’v’ (’u’ <’v’) are merged.

Merge regions only one pixel to larger neighbor regions.

First scan

(1a) the color of the pixel at (y, x) (I(y, x)) is compared

with the color of its four neighbors.

• All are different => give a new label to I(y, x)

• At least, one is the same => copy its label to I(y, x)

(1) Unique labels are given to
regions.

(2) The length of lc(u) is
estimated.

(1b) U-shaped region:
• ‘a’ and ‘b’ have the same color, but different labels

(‘m’ >‘n’) have been given to them.
 => set a pointer from ‘m’ to ‘n’ in the region table.
• When the first scan is finished, the index in the

region table is scanned from the top, and the
pointers are dereferenced.

Region table

(2a) for I(y, x-1) whose label is ’c’, lc(‘c’) is counted up

 by 2 (’c’ is contiguous to ’a’ and ’b’).

(2b) (‘c’,’a’) and (‘c’,b’) are held in the register array

 and the buffers, and are compared with new pairs

 for preventing redundant count-up.

Second

Scan

1. Read back the region label at (y, x), which are

stored in the off-chip memory bank, and

dereference it using the region table in order to

obtain the true label.

2. Detect which region is contiguous to which region.

Suppose that two contiguous regions (’c’, ’a’) is

newly detected and this is the first pair for ’c’ and

the third for ’a’

 For ‘c’: allocate a block of len(lc(c))+δ to

store all contiguous regions to ’c’

• the address of the block is addr(c)

• ’a’ is store as the first contiguous region

• #count(c) = 1

 For ’a’,

• Store ’c’ using its addr(a)+#count(a) as

the address,

• Increment #count(a) to 3

 At the same time, calculate the distance d

between ’c’ and ’a’, and if the distance is

smaller than a given threshold MAX_DIST,

store the pair (’c’ and ’a’) in the dist.table (in

the queue pointed by d).

Merging

region

First, the dist.table is scanned from d = dmin, and a

pair with the minimum distance is read out from its

queue. Suppose that the pair is (’c’,’a’) and ’a’ < ’c’.

 Merge ‘c’ to ‘a’

1. Update information of ‘a’ in the region table.

2. Create a new lc(‘a’) from old lc(‘a’) and lc(‘c’),

and add new region pairs into dist.table (old

ones are not deleted here).

3. Old ones are skipped when they are read out

from the dist.table.

Then, the dist.table is scanned from the current

minimum distance (dmin), while pairs whose distance is

less than MAX_DIST exist.

Region merging of the small regions
1. Read out address of

a small region.

2. Read out

a. its color,

b. its eight

neighbor’s

region labels and

colors

sequentially.

3. Chose the closet neighbor and merge the small region

to it.

Implementation Results

Device: Xilinx XC4VLX160

Operational Frequency: 166MHz

Hardware Usage: 9144 LUTs, and 96 block RAMs

Images #Region fps

input output %

Pepers 8995 175 1.95 123.3

Tulips 13810 352 2.55 82.3

Monarch 14842 300 2.02 82.7

Serrano 9194 501 5.45 101.9

Experimental Results

 The execution time is about 7 - 9 times faster than Intel Core2

Extreme Q6850 (3GHz)

 The important point here is that we can achieve higher performance

than microprocessors for the problems which seems to be inherently

sequential by relaxing the data management policy, and enabling the

pipeline processing of the data.

Conclusions and future work

We have shown that we can achieve real-time

processing by relaxing the data management in the

algorithm and enabling the pipeline processing of the

data.

In our current implementation, the distance between

two regions is calculated using only local relation of

the two regions.

→ use the global relation of the regions for

 obtaining better segmentation.

