
Limitations of Incremental Signal-Tracing for FPGA Debug

IncTrace — v1.0

Eddie Hung, Steven J. E. Wilton
Department of Electrical and Computer Engineering

University of British Columbia
{eddieh,stevew}@ece.ubc.ca

August 2012

This is a supporting document for the IncTrace source code that implements incremental-signal tracing on
the VPR6 FPGA CAD tool (part of the Verilog-To-Routing project [3]), as described in our paper [2].

In this implementation, incremental-tracing can be used to incrementally connect (i.e. without moving
any of the placed blocks, nor ripping up any of the existing routing) a set of nets specified by the user
to an input pin of a free memory-block, under the assumption that these unoccupied memories can be
transformed into a trace-buffer with no overhead. For more details regarding this work, please consult our
paper.

The included patch is designed to be applied to vtr release 1.0 full.tar.gz available from http:

//code.google.com/p/vtr-verilog-to-routing/. The md5sum of this file is:

f5e513d0cb98ec8ab90da654b6728ace vtr release 1.0 full.tar.gz

After extracting the tarball, place the patch file into the vtr release sub-directory. To apply the patch,
issue the following command from this same location:

vtr release$ patch -p0 < IncTrace v1.0.patch

After building VPR, the following new switches will now be available from the command-line:

--inc trace Enable incremental-tracing.
--inc nets <comma-separated-int> Trace the (local) nets specified in this comma-separated

list; e.g. --inc nets 1,2,3,4,5

--inc swap bles Enable swapping the order of BLEs within the logic
cluster to improve tracing flexibility. See paper for
more details [2].

Note: Incremental-tracing does not support the minimum channel-width binary-search feature within
VPR, hence, a fixed channel width must always be specified using the --route chan width <int> switch.

1

http://code.google.com/p/vtr-verilog-to-routing/
http://code.google.com/p/vtr-verilog-to-routing/

Furthermore, the following switch has been modified:

--router algorithm [breadth first | timing driven | directed search | read route]

The read route option (in combination with the --route and --route file switches) allows users to
read into VPR a previously-routed solution for incremental-tracing.
Note: This patched version VPR can only read in .route files that were previously generated by a patched
VPR instance: this is because new routing files contain additional information to allow its reconstruction.
Note: In order to read a routing file, its channel width must be specified!

Net Selection

In this modified version of VPR, after the packing stage, VPR will now write out a .netinfo file. This
file is in CSV format, and specifies one signal per line, with each entry separated by a comma: local net
number, net name, global net number, block number.

Nets to be traced (using --inc nets) must be specified using this local net number. Local nets that do
not have a block number (last column) cannot be traced. We have observed that these nets exist only
between an LUT output and a FF input; their values can be observed by tracing the FF output instead.

Example mkPktMerge.netinfo excerpt:

0,top^EN iport1 put,0,11

1,top^EN iport0 put,1,10

2,n2223,2,4

3,n2225,3,7

4,top^EN oport get,4,18

5,n2255,5,3

6,n2278,6,6

7,top^FF NODE 2324,7,8

8,top^FF NODE 2323,8,5

9,top.arSRLFIFO b+fi1.generic fifo sc b+fifo 1^FF NODE 867,9,3

One solution for selecting influential signals in a circuit is described in [1].

Usage Examples

Only pack the circuit (source netlist mkPktMerge.blif must be present in the working directory) in order
to dump out the signals into the .netinfo CSV file:

./vpr sample arch.xml mkPktMerge --pack

Perform packing, placement, and routing (using a fixed channel-width of 50 tracks) before incrementally
tracing the local nets: 0, 1, 2 and 3:

2

./vpr sample arch.xml mkPktMerge --route chan width 50 --inc trace --inc nets 0,1,2,3

Read in a previous packing (by default, VPR will use mkPktMerge.net as the --net file, but re-place and
re-route (with channel-width of 60) before incrementally-tracing the local nets 20–29 with LE swapping:

./vpr sample arch.xml mkPktMerge --place --route --route chan width 60 --inc trace

--inc nets 20,21,22,23,24,25,26,27,28,29 --inc swap bles

Read in previous packing, placement and routing (with channel-width of 50) before incrementally-tracing
the local nets 30, 31, 32, 33, with LE swapping:

./vpr sample arch.xml mkPktMerge --route --router algorithm read route

--route chan width 50 --inc trace --inc nets 30,31,32,33 --inc swap bles

Source Code

This section briefly describes the changes that were made to implement incremental signal-tracing
inside VPR. For further information about the following VPR functions, please consult the unofficial,
automatically generated documentation (using Doxygen) located at: http://ece.ubc.ca/~eddieh.

After packing, VPR calls the place and route() function. Inside this function, if incremental signal-
tracing is requested and the channel width has been fixed, then after a successful placement and routing of
the original user-circuit, VPR will begin incremental-tracing by first calling inc parse trace string()

and then entering the inc trace() function. This function, along with other incremental signal-tracing
source code, is located in the SRC/inc sub-directory of VPR. After incremental tracing is complete, VPR
continues as normal beginning with the timing analysis stage.

inc parse trace string() parses the command-line string into integers, and transforms local nets (nets
that exist entirely within a logic cluster) into global nets that can be routed on the global interconnect,
via the inc vpack to clb() function.

inc trace() is responsible for setting up the tracing environment, such as resetting data structures, and
marking all free memory blocks as potential trace-buffer targets (mark targets()). Once these tasks are
complete, it calls inc trace nets().

inc trace nets() is where the bulk of the work happens, and is very similar to the original VPR routine
for breadth-first search: try breadth first route(). Here, the function will iteratively execute the
Pathfinder negotiated congestion routing algorithm until a valid solution is found, or it exceeds the
maximum number of iterations. In each iteration, for each of the nets that are to be traced, it will rip up
any existing incremental-traces (note: the original routing is not ripped up), attempt to re-route a new
trace using a breadth-first strategy (calling inc route net() to do so). At the end of each iteration, a
check is performed to see if the solution is valid (inc feasible routing()) if no incremental resources
are being overused.

inc route net() performs the breadth-first incremental-routing for each trace, and is based on the original
VPR routine: breadth first route net(). The key difference here is that it performs breadth-first
expansion from all points of the existing user net, searching until any trace-pin sink is found. For local
nets (nets that exist entirely within a logic cluster), it expands from all local OPINs within the same

3

http://ece.ubc.ca/~eddieh

main()

place_and_route()

inc_trace()inc_parse_trace_string()

inc_trace_nets()

inc_route_net()

inc_feasible_routing() inc_place_and_connect()inc_vpack_to_clb() mark_targets()

Figure 1: Caller-graph for main Incremental Signal-Tracing functions.

cluster. In addition, the expand neighbours function (inc breadth first expand neighbours()) will
only add routing resources onto the priority queue only if there it contains spare capacity.

After a valid solution is found, inc place and connect() is called to place a trace-buffer into the free
memory location (if one hasn’t been placed already) and then to fully connect this trace net to it. After
this, inc trace nets() will return and VPR will resume.

Figure 1 illustrates the caller-graph for these main functions.

References

[1] Eddie Hung and Steven J. E. Wilton. Scalable Signal Selection for Post-Silicon Debug. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems.

[2] Eddie Hung and Steven J. E. Wilton. Limitations of Incremental Signal-Tracing for FPGA Debug. In
FPL 2012, International Conference on Field Programmable Logic and Applications; Oslo, Norway,
August 2012.

[3] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeff Goeders, Andrew Somerville, Kenneth B.
Kent, Peter Jamieson, and Jason Anderson. The VTR Project: Architecture and CAD for FPGAs from
Verilog to Routing. In Proc. of the 20th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pages 77–86, 2012.

4

