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Arrays 

FPGAs DSPs CPUs 

Programmable Solutions: 1985-2002 

Single Cores 

 Technology scaling favors programmability 
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Programmable and Sequential 

 Single core microprocessor 

 Reaching the limit 
 After four decades of success… 
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Large, Power Hungry hardware is necessary for the 

comforts of sequential programming models 
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Parallel 
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FPGAs DSPs CPUs 

Programmable Solutions: 2002-20XX 

Single Cores 
Coarse-Grained 
Massively 
Parallel 
Processor 
Arrays 

Multi-Cores 
Coarse-Grained 
CPUs and DSPs 

Multi-Cores Arrays 

 Technology scaling favors programmability and 

parallelism 
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Processor Memory Processor Memory 

Shared External Memory 

 Exploit parallelism on a chip 

 Take advantage of Moore‘s law 

 Processors not getting faster, just wider 

 Keep the power consumption down 

 Use more transistors for information processing 

 Programmers required to code in an explicitly parallel fashion 

 

Programmable and Parallel 

Processor Memory Processor Memory 
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Multicore Devices 
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The Role of FPGAs [FPGA’2011] 

 FPGA Flexible IO used to bring data into GPUs / 
CPUs for algorithmic processing 
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Source: http://www.eecg.toronto.edu/~jayar/fpga11/FPGA2011PreConfWorkshop.htm 
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MOTIVATING CASE STUDY : 
FINITE IMPULSE RESPONSE (FIR) FILTER 

8 
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FIR Filter Example 
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TAPS (N=7) 
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Custom Multithreaded Pipeline 

 Throughput of 1 

thread per cycle 

is possible using 

a direct HW 

implementation 

 FPGA offers 

custom pipeline 

parallelism 

which can be 

perfectly tailored 

to the FIR filter 
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Absolute Performance Comparison (FIR) 
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Power Comparison (FIR) 
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Performance-to-Power Ratio (FIR) 
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FPGAs for Computation 

 Although the FIR filter is a simple example, it is 

representative of a large class of applications 
 Large amounts of spatial locality 

 Computation can be expressed as a feed forward pipeline 

 

 The fine grained parallelism of the FPGA can be 

used to create custom ―processors‖ that are 

orders of magnitude more efficient than CPUs or 

GPUs 
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Future Forecast 

 Vendors see GPU acceleration as having a 

dramatic impact on HPC in the next two years 

 FPGAs could not even be spelled correctly 

Source: Intersect360 Research Report, 2010 
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Why not FPGAs? 

 David Mayhew, AMD fellow [IMA: High 
Performance Computing and Emerging 
Architectures] 
 ―Availability of cost-effective, massively-parallel, floating-point and 

scalar accelerators crucial to many HPC workloads 

 I apologize profusely to the FPGAs crowd who believe that FPGAs 
are going to somehow become relevant in this space, but I believe 
that it is GPUs or nothing (nothing meaning that general-purpose 
processors do everything). 

 FPGAs have been 3 years away from being standard system 
components for the last 10 years and will be for the next 10 years 

 Die-stacking may affect this bit of cynicism/pessimism 

 A layer of FPGA in a standard, vertical processor/memory stack 
may make FPGAs inexpensive enough and generally useful 
enough to achieve general system integration‖ 

 
Source: http://www.ima.umn.edu/2010-2011/W1.10-14.11/activities/Mayhew-David/Minn-Jan-11%5B2%5D.pptx 
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THE COMPETITION 

17 
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void coarse_grained_serial (… ) { 

  ... 

} 
 

 

void parallel_kernel(float ... )  
{ 

 ... 

} 

 

void main( ) { 

  ... 

  parallel_function<<...>>(..); 

  serial_function(..); 

  ... 

} 

 

OpenCL/CUDA Application Code 

Heavy parallel workload on the GPU  

Serial  routines on the CPU 

CPUs & GPUs 
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GPU Power Consumption 

 High-end GPU cards may exceed 250W power 

requirements 



© 2012 Altera Corporation—FPL 2012 Keynote 

Datacenter Applications 

 A facility used to house a large farm of servers and 

associated components 
 Connectivity, storage and cooling 

 FPGAs & GPUs can only reasonably address a specific 

class of datacenters: 
 High Performance Technical Computing (HPTC) 

 Scientific or Engineering Computations 

 High Performance Business Computing (HPBC) 

 Financial Calculations, Analytics 

 Almost 20% of the entire server market 
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Power & Cooling 

 Power and cooling has become a top concern 

among HPC data centers 
 Energy prices have been hovering at near historic levels 

 

 Processor based design has increasingly come up against the 

power wall 

 More challenging to obtain higher single-core performance while 

maintaining reasonable power 

 

 Companies are increasingly sensitive about reducing their carbon 

footprint 

 The ―Green Movement‖ 

Source: IDC, 2010 
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Power & Cooling (2) 

  HPC data centers‘ average per site: 
 Available floor space over 26,000 ft 

 Used floor space about 17,000 ft 

 Annual power consumption 6.3 MW 

 Data centers costs 
 Annual power cost was $2.9 million or $456 per KW 

 Ten sites provided the percentage of their budget spent on power 

 Average was 23%  

 Cooling Upgrades 
 Average amount budgeted is $6.87 million 

Source: IDC, 2010 
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Power & Cooling (3) 

 GPUs have massive power requirements 

 

 Power and Cooling are one of the key datacenter 

drivers 

 

 GPUs are seen as having a bright future in HPC 

servers 

 

 It doesn’t add up 
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CHALLENGES 

24 
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HPC GAPs 

 Programming Models & Memory Performance 

highlighted as the largest GAPs 

Source: Intersect360 Research Report, 2010 
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main(…) 

{ 

     for( … ) 

     { 

} 

Software Programmer’s View 

 Programmers are used to software-like environments 
 Ideas can easily be expressed in languages such as ‗C‘ 

 Typically start with simple sequential program 

 Use parallel APIs / language extensions to exploit multi core for 

additional performance. 

 

 Compilation times are almost instantaneous 

 Immediate feedback and rich debugging tools 
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FPGA Hardware Design 

27 
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Design Entry Complexity 

 Description of these circuits is done through 

Hardware Design Languages such as VHDL or 

Verilog 

 Incredibly detailed design must be done before a 

first working version is possible 
 Cycle by cycle behavior must be specified for every register in the 

design 

 The complete flexibility of the FPGA means that the designer 

needs to specify all aspects of the hardware circuit 

 Buffering, Arbitration, IP Core interfacing, etc 

28 
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FPGA CAD / Compilation is Complex 

 Sophisticated optimization algorithms are used in 
each step and lead to significantly longer runtimes 
than a software compile ( hours vs. minutes ) 
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Timing Closure Problems 

 Designers will often have to go through numerous 

iterations to meet timing requirements 

30 
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Design Scalability 

 Using RTL design entry, there is significant work in 

porting applications from generation to generation of 

FPGA technology 

31 

 Ideally a 2x improvement 

in logic capacity should 

translate into 2x 

performance 

 

 In addition to doubling the 

datapath, control logic and 

SOC interconnect need to 

change as well 
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Portability 

 What happens when a designer wants to try their 

algorithm on another platform? 
 Would it be better on a CPU, GPU or DSP processor? 
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Fundamental challenges  

 Implementing an algorithm on an FPGA is done 

by designing hardware 
 Difficult to design, verify and code for scalable performance 

 

 Generally, software programmers will have 

difficulty using FPGAs as massive multi-core 

devices to accelerate parallel applications 

 

 Need a programming model that allows the 

designer to think about the FPGA as a 

configurable multi-core device 
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An ideal programming environment … 

 Has the following characteristics: 
 Based on a standard multicore programming model rather than 

something which is FPGA-specific 

 

 Abstracts away the underlying details of the hardware 

 VHDL / Verilog are similar to ―assembly language‖ programming 

 Useful in rare circumstances where the highest possible efficiency is 
needed 

 

 The price of abstraction is not too high 

 Still need to efficiently use the FPGA‘s resources to achieve high 
throughput / low area 

 

 Allows for software-like compilation & debug cycles 

 Faster compile times 

 Profiling & user feedback 
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OPENCL : THE ANSWER ? 

35 
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The BIG Idea behind OpenCL 

 OpenCL execution model …  

 Define N-dimensional computation domain 

 Execute a kernel at each point in computation domain 

void 

trad_mul(int n,  

         const float *a,  

         const float *b,  

         float *c) 

{ 

  int i; 

  for (i=0; i<n; i++) 

    c[i] = a[i] * b[i];  

} 

Traditional loops 
kernel void 

dp_mul(global const float *a,  

       global const float *b,  

       global float *c) 

{ 

  int id = get_global_id(0); 

 

  c[id] = a[id] * b[id]; 

  

} // execute over “n” work-items 

Data Parallel OpenCL 

Parallelism is Explicit 
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Accelerator 

OpenCL Programming Model 
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Accelerator Accelerator Accelerator Processor 

__kernel void 
sum(__global float *a, 
    __global float *b, 
    __global float *y) 
{ 
  int gid = get_global_id(0); 
  y[gid] = a[gid] + b[gid]; 
} 

main() { 
   read_data( … ); 
   maninpulate( … ); 
   clEnqueueWriteBuffer( … ); 
   clEnqueueNDRange(…,sum,…); 
   clEnqueueReadBuffer( … ); 
   display_result( … ); 
} 

 Typical challenges: 
 Global/local memory bandwidth 

 Limited floating point cores 

 Thread occupancy 
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OpenCL Host Program 

 Pure software written in standard ‗C‘ 

 Communicates with the Accelerator Device via a 

set of library routines which abstract the 

communication between the host processor and 

the kernels 

38 

main() 
{ 
   read_data_from_file( … ); 
   maninpulate_data( … ); 
  
   clEnqueueWriteBuffer( … ); 
   clEnqueueTask(…, my_kernel, …);   
   clEnqueueReadBuffer( … ); 
 
   display_result_to_user( … ); 
} 

Copy data from 

Host to FPGA 

Ask the FPGA 

to run a 

particular kernel 

Copy data from 

FPGA to Host 
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OpenCL Kernels 
 Data-parallel function 

 Defines many parallel threads 

of execution 

 Each thread has an identifier 

specified by ―get_global_id‖ 

 Contains keyword extensions 

to specify parallelism and 

memory hierarchy  

 Executed by compute 

object 
 CPU 

 GPU 

 Accelerator 
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__kernel void 
sum(__global const float *a, 
__global const float *b, 
__global float *answer) 
{ 
int xid = get_global_id(0); 
answer[xid] = a[xid] + b[xid]; 
} 

__kernel void sum( … ); 

float *a = 

float *b = 

float *answer = 

0 1 2 3 4 5 6 7 

7 6 5 4 3 2 1 0 

7 7 7 7 7 7 7 7 
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Mapping OpenCL Programs 

40 
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FPGA 

FPGA OpenCL Architecture 
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Compiling OpenCL to FPGAs 

42 
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main() 
{ 
   read_data_from_file( … ); 
   maninpulate_data( … ); 
  
   clEnqueueWriteBuffer( … ); 
   clEnqueueKernel(…, sum, …);   
   clEnqueueReadBuffer( … ); 
 
   display_result_to_user( … ); 
} 

__kernel void 
sum(__global const float *a, 
__global const float *b, 
__global float *answer) 
{ 
int xid = get_global_id(0); 
answer[xid] = a[xid] + b[xid]; 
} 

Kernel Programs 

Host Program 

__kernel void 
sum(__global const float *a, 
__global const float *b, 
__global float *answer) 
{ 
int xid = get_global_id(0); 
answer[xid] = a[xid] + b[xid]; 
} 
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Mapping Multithreaded Kernels to FPGAs 

 The most simple way of mapping kernel functions 

to FPGAs is to replicate hardware for each 

thread 
 Inefficient and wasteful 

 Better method involves taking advantage of 

pipeline parallelism 
 Attempt to create a deeply pipelined representation of a kernel 

 On each clock cycle, we attempt to send in input data for a new 

thread 

 Method of mapping coarse grained thread parallelism to fine-

grained FPGA parallelism 

43 
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Example Pipeline for Vector Add 

 On each cycle the portions of the 
pipeline are processing different 
threads 

 While thread 2 is being loaded, 
thread 1 is being added, and 
thread 0 is being stored 

Load Load 

Store 

0 1 2 3 4 5 6 7 

8 threads for vector add example 

Thread IDs 

44 
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Example Pipeline for Vector Add 

 On each cycle the portions of the 
pipeline are processing different 
threads 

 While thread 2 is being loaded, 
thread 1 is being added, and 
thread 0 is being stored 

Load Load 

Store 

0 
1 2 3 4 5 6 7 

8 threads for vector add example 

Thread IDs 
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Example Pipeline for Vector Add 

 On each cycle the portions of the 
pipeline are processing different 
threads 

 While thread 2 is being loaded, 
thread 1 is being added, and 
thread 0 is being stored 

Load Load 

Store 

0 

1 
2 3 4 5 6 7 

8 threads for vector add example 

Thread IDs 
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Example Pipeline for Vector Add 

 On each cycle the portions of the 
pipeline are processing different 
threads 

 While thread 2 is being loaded, 
thread 1 is being added, and 
thread 0 is being stored 

Load Load 

Store 
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8 threads for vector add example 

Thread IDs 
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Example Pipeline for Vector Add 

 On each cycle the portions of the 
pipeline are processing different 
threads 

 While thread 2 is being loaded, 
thread 1 is being added, and 
thread 0 is being stored 

Load Load 

Store 
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8 threads for vector add example 

Thread IDs 

48 

+ 

0 

1 



© 2012 Altera Corporation—FPL 2012 Keynote 

ALTERA OPENCL SYSTEM 

ARCHITECTURE 
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OpenCL System Architecture 
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External Interface : High Level 

51 
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OpenCL System Architecture 

52 
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Altera OpenCL Kernel Architecture 
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OpenCL CAD Flow 

vectorAdd_kernel.cl 
vectorAdd_host.c 

CLANG  

front end 

System 

Description 
C 

compiler 

ACL 

runtime 

Library 

 

program.exe 

Optimizer 

Unoptimized 

LLVM IR 

Optimized 

LLVM IR 

RTL 

generator 
Verilog 

PCIe 

DDR* 
ACL 

iFace 

CLANG  

front end 

Unoptimized 

LLVM IR 

Front End 
Parses OpenCL extensions 

and intrinsics – produces 

LLVM IR 
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OpenCL CAD Flow 

vectorAdd_kernel.cl 
vectorAdd_host.c 

CLANG  

front end 

C 

compiler 

ACL 

runtime 

Library 

 

program.exe 

Optimizer 

Unoptimized 

LLVM IR 

Optimized 

LLVM IR 

PCIe 

DDR* 
ACL 

iFace 

Optimizer 

Optimized 

LLVM IR 

Middle End 
~150 compiler passes such 

as loop fusion, auto 

vectorization, and branch 

elimination leading to more 

efficient HW 
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OpenCL CAD Flow 

vectorAdd_kernel.cl 
vectorAdd_host.c 

CLANG  

front end 

C 

compiler 

ACL 

runtime 

Library 

 

program.exe 

Optimizer 

Unoptimized 

LLVM IR 

Optimized 

LLVM IR 

RTL 

generator 
Verilog 

PCIe 

DDR* 
QSYS 

Quartus RTL 

generator 
Verilog 

Back End 
•Instantiate Verilog IP for 

each operation in the 

intermediate representation 

•Create control flow 

circuitry to handle loops, 

memory stalls and 

branching 

•Traditional optimizations 

such as scheduling and 

resource sharing 
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CASE STUDIES 

57 
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Applications from Different Domains 

 Document Filtering 
 Simplified information filtering benchmark 

 High on BW, low on compute 

 All about moving the data efficiently 

 Detailed study in: 

 Doris Chen, Deshanand Singh, ―Invited Paper: Using OpenCL to 

evaluate the efficiency of CPUs, GPUs, and FPGAs for 

Information Filtering‖, FPL‘2012. 

 

 Monte Carlo Black Scholes Computation 
 Financial Benchmark to compute derivative prices 

 Heavy on compute, low on BW requirements 

 The vast majority of data and communications are kept onchip 
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EXAMPLE: INFORMATION 

FILTERING 
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Information Filtering 

 Filter document feeds for content which matches 
particular user search profiles 

 Examples: 
 News articles which match a particular interest list 

 Newly published conference or journal papers which are in your 
research area 
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General Idea 

 Documents are converted into 

bag of words format: 

 (t1,f1), (t2, f2), (tn, fn) 

 8 bits for the frequency 

 24 bits for the term ID 

 Search profiles have the 

format: 

 (t1,w1), (t2, w2), (tn, wn) 

 64 bit fixed point representations 

of the weights 

 Documents are scored using 

the following: 
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Simple Initial OpenCL Implementation 

 Process each document as one parallel thread 
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Parameterizing the code 

 Some architectures (FPGAs, GPUs) make use of 

memory coalescing optimizations where efficient 

requests are made in the case where: 
 Consecutive threads access consecutive memory locations 

 

 

 

 

 

 

 

 Note that T=1 is the same as having one document processed 

per parallel thread 
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T threads 
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DDRx Configuration 
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Load/Store Memory Coalescing 

 External memory has wide words (256 bits) 

 Loads/stores typically access narrower words (32 

or 128 bits) 

 

 

 

 

 Given a sequence of loads/stores, we want to 

make as few external memory read/write 

requests as possible 

 

32 

256-bit DDR word 

32 32 32 32 32 32 32 
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Load/Store Memory Coalescing 

 Coalescing is important for good performance 
 Combine loads/stores that access the same DDR word or the one 

ahead of the previously-accessed DDR word 

 Make one big multi-word burst request to external memory whenever 

possible 

 Fewer requests  less contention to global memory 

 Contiguous bursts  less external memory overhead 
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1000 1001 1002 1003 1004 1005 1006 1007 100a 100c 100d 

Load/Store Addresses (128-bit words): 

1 burst request for 4 DDR words 1 word 1 word 

 3 requests in total 
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Bloom Filtering 

 Most entries in the search profile are ZERO 
 User typically only cares about some subset of the terms present in 

all documents 

 A simple hashing strategy can be used to filter out 
unnecessary requests to external memory 

 Bloom filters are generalizations where multiple hash 
functions can be used 

 

 

 

 The size of the bloom filter directly impacts the 
number of false positives leading to external memory 
accesses 
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Test Platforms 

68 

Test 

Platform 

Specs Process External 

Memory 

BW 

Cache 

Size 

Board 

Power 

Multi-Core 

CPU 

Intel Xeon 

W3690 

32nm 32 GB/s 12 MB 130W 

GPU NVIDIA 

Tesla 

C2075 

40nm 144 GB/s 768 MB 215W 

FPGA Altera 

Stratix-IV 

530  DE4 

40nm 12.8 GB/s No 

hardened 

cache 

21W 
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OpenCL on CPU 

 Version 1.5 of the Intel OpenCL SDK has 

Autovectorizing capabilities that allow the Kernel 

to take advantage of SSE* instructions. 
 Need to use these to get a fair comparison of the CPU baseline 
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Source: http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf 
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CPU Results 

Configuration MT / s MT / J 

T=1, no bloom filter 196 1.5 

T=1, bloom filter (32k) 1614 12.4 

T=1, bloom filter (64k) 2070 15.9 

T=1, bloom filter (128k) 1717 13.2 

T=2, bloom filter (64k) 1949 15.0 

T=4, bloom filter (64k) 442 3.4 
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 T=1 leads to the best performance 
 Entire documents can be fetched into local caches 

 
 Large bloom filters can be used and entirely kept in the 

cache 
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OpenCL on GPU 

 Hierarchical Memory 

Model 
 Constant  used to hold 

lookup table data that is 

unchanging during the run 

of a program  

 Local Memory  

Scratchpad space where 

threads can share 

information / intermediate 

results 

 Global  Off chip DDR 

memoy 
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GPU Results 
Configuration MT / s MT / J 

T=128, no bloom filter 671 3.1 

T=128, bloom filter (32k, constant) 1138 5.3 

T=128, bloom filter (32k, local) 501 2.3 

T=128, bloom filter (32k, global) 2499 11.6 

T=64, bloom filter (32k, global) 2196 10.2 

T=256, bloom filter (32k, global) 2381 11.1 

T=512, bloom filter (32k, global) 1695 7.9 

T=128, bloom filter (64k, global) 1923 8.9 

T=128, bloom filter (16k, global) 3240 15.1 

T=128, bloom filter (8k, global) 2798 13.0 

T=128, simple hash (8k, global) 2515 11.7 
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 Small bloom filter (16K) which is stored in ―global‖ 
memory performs the best 
 Tesla C2075 has a cache which likely holds the entire 

bloom filter  
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OpenCL on FPGA 

 One of the key innovations in the Altera OpenCL 

compiler is the ability to create a ―soft logic‖ 

cache for constant data 
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FPGA Results 

Configuration MT / s MT / J 

T=64, no bloom filter 50 2.4 

T=64, bloom filter (32k, constant) 1637 77.9 

T=64, bloom filter (64k, constant) 1755 83.6 

T=32, bloom filter (64k, constant) 1535 73.1 

Extrapolated: FPGA +  

Double Bandwidth 

2925 117 

Hand coded FPGA solution [1] 772 N/A 
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[1] Sai Rahul Chalamalasetti, Martin Margala, Wim Vanderbauwhede, Mitch Wright, Parthasarathy 

Ranganathan: Evaluating FPGA-acceleration for real-time unstructured search. ISPASS 2012: 200-209 

 FPGA solution is completely limited by external memory 

bandwidth 

 Notice the tremendous impact of the bloom filter on 

ensuring that the bandwidth is not wasted 

 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Margala:Martin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Margala:Martin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wright:Mitch.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ranganathan:Parthasarathy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ranganathan:Parthasarathy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ranganathan:Parthasarathy.html
http://www.informatik.uni-trier.de/~ley/db/conf/ispass/ispass2012.html


© 2012 Altera Corporation—FPL 2012 Keynote 

Overall Results 

 Kernel is able to filter documents at a rate of 11.7 

GBYTES / second 

 Achieves much better performance / watt than 

GPU or CPU  

 

 

 

 With a slightly better board design, the FPGA can 

almost match the GPU in terms of pure 

performance while consuming 190W less 
 200W equates to approx $300 / year in power costs 
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Platform Perf/Watt (MT / J) 

Statix IV-530 83.6  117 (extrapolated) 

Xeon W3690 15.9 

Tesla C2075 GPU 15.1 
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EXAMPLE: MONTE CARLO 

BLACK SCHOLES 

76 



© 2012 Altera Corporation—FPL 2012 Keynote 

Finance : Equity Derivative Pricing 

 Monte Carlo simulation of all possible paths for the 
underlying equity value 
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Overall Algorithm Architecture 

 Approximately 300 lines of OpenCL code can be 
used to describe this entire application 

 Portable from CPU to GPU to FPGA with no 
changes 

 Currently implemented with IEEE 754 single 
precision 
 Possible extension to extended single precision (36 bit mantissa) 

Mersenne 

Twister 

Uniform Random 

Number Generator 

Inverse 

Normal 

Cumulative Density 

Function 

Geometric 

Brownian 

Motion 

European 

Call 

Option 

Valuation 
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Example : Inverse Normal CDF 
float ltqnorm(float p) 
{ 
 floatq, r; 
 
 errno = 0; 
 
 if (p < 0 || p > 1) 
 { 
  return 0.0; 
 } 
 else if (p == 0) 
 { 
  return -HUGE_VAL /* minus "infinity" */; 
 } 
 else if (p == 1) 
 { 
  return HUGE_VAL /* "infinity" */; 
 } 
 else if (p < LOW) 
 { 
  /* Rational approximation for lower region */ 
  q = sqrt(-2*log(p)); 
  return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / 
   ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1); 
 } 
 else if (p > HIGH) 
 { 
  /* Rational approximation for upper region */ 
  q  = sqrt(-2*log(1-p)); 
  return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / 
   ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1); 
 } 
 else 
 { 
  /* Rational approximation for central region */ 
      q = p - 0.5; 
      r = q*q; 
  return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q / 
   (((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1); 
 } 
} 

•This computation 

contains complex 

functions such as sqrt 

and log 

•GPUs cannot execute 

this code as efficiently as 

FP Adds and Mults 
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Throughput & Power Comparison 

Power Throughput 

C2075 (GPU) 215W 2098 MSims/second 

SIV530 (DE4) 21W 2181 MSims/second 
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 C2075 : NVIDIA‘s accelerator card 
 Based on the ―Fermi‖ architecture 

 40nm – 570  mm2 

 1.15 GHZ 

 448 Cores 

 1.03 Teraflops of single-precision performance 

 144 GB/second global memory bandwidth 

 PCIe Gen2 x 16 
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RESEARCH AND 

RECOMMENDATIONS 
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Recommendations 

 Fundamentally new areas of FPGA research need to 
be undertaken 
 Standard programming models 

 Tool usability (debugging, profiling) 

 

 Develop boards that are meant for algorithm 
acceleration 

 

 Have the entire software stack ready to support this 
board 
  A high level language compile ( OpenCL or others ) 

 Debugging & Profiling 

 Libraries that are pre-optimized for best possible implementation on 
the FPGA 
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Recommendations (2) 

 Don‘t underestimate the GPU 

 Potential to infiltrate the ―traditional server‖ 

market 
 Eg. Speed up database queries for companies like Amazon & 

Ebay 

 IEEE Spectrum Article : "Why Graphics Processors will Transform 

Database Processing", Blas and Kladeway, Oracle Corporation  

 FPGA hardware is ideally suited to these kinds of 

matching algorithms 
 Need tools for people to harness the power 
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Current OpenCL System Architecture  
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Global Memory 

Kernel0 Kernel1 
Kernel

N 
Kernel2 

Host Processor 

… 

High demand on CPU 

Memory-to-memory paradigm 
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Desired Architecture ( OpenCL Pipes ) 
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Global Memory 
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CPU:  Configure and “Go” 

Stream orientation when needed 


