
© 2012 Altera Corporation—FPL 2012 Keynote

Compiling OpenCL to FPGAs :

 A Standard and Portable Software

 Abstraction for System Design

Deshanand Singh

Supervising Principal Engineer

Altera Toronto Technology Center

© 2012 Altera Corporation—FPL 2012 Keynote

2

Fine-Grained
Arrays

FPGAs DSPs CPUs

Programmable Solutions: 1985-2002

Single Cores

 Technology scaling favors programmability

© 2012 Altera Corporation—FPL 2012 Keynote

Programmable and Sequential

 Single core microprocessor

 Reaching the limit
 After four decades of success…

3

Conceptually

Sequential

Program

In
s
tr

u
c

ti
o

n
s

Conceptually

Flat

Memory

Space

FU FU FU FU

Instruction Dispatch

Cache

Large, Power Hungry hardware is necessary for the

comforts of sequential programming models

© 2012 Altera Corporation—FPL 2012 Keynote

4

Fine-Grained
Massively
Parallel
Arrays

FPGAs DSPs CPUs

Programmable Solutions: 2002-20XX

Single Cores
Coarse-Grained
Massively
Parallel
Processor
Arrays

Multi-Cores
Coarse-Grained
CPUs and DSPs

Multi-Cores Arrays

 Technology scaling favors programmability and

parallelism

© 2012 Altera Corporation—FPL 2012 Keynote

Processor Memory Processor Memory

Shared External Memory

 Exploit parallelism on a chip

 Take advantage of Moore‘s law

 Processors not getting faster, just wider

 Keep the power consumption down

 Use more transistors for information processing

 Programmers required to code in an explicitly parallel fashion

Programmable and Parallel

Processor Memory Processor Memory

© 2012 Altera Corporation—FPL 2012 Keynote

Multicore Devices

6

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

L2

Memory

Work Distribution Host CPU

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2

Memory

Cavium NetLogic Freescale

Adapteva Tilera NVIDIA

Flexible

I/O

UARTx2,

USBx2,

JTAG,

I2C, SPI

MiCA

m
P

IP
E

10 GbE

XAUI S
e
rD

e
s

4x GbE
SGMII

10 GbE

XAUI S
e
rD

e
s

4x GbE
SGMII

10 GbE

XAUI S
e
rD

e
s

4x GbE
SGMII

10 GbE

XAUI S
e
rD

e
s

4x GbE
SGMII

S
e
rD

e
s

PCIe 2.0

8-lane

S
e
rD

e
s

PCIe 2.0

4-lane

S
e
rD

e
s

PCIe 2.0

4-lane

Memory Controller (DDR3)

Memory Controller (DDR3)

© 2012 Altera Corporation—FPL 2012 Keynote

The Role of FPGAs [FPGA’2011]

 FPGA Flexible IO used to bring data into GPUs /
CPUs for algorithmic processing

7

Source: http://www.eecg.toronto.edu/~jayar/fpga11/FPGA2011PreConfWorkshop.htm

© 2012 Altera Corporation—FPL 2012 Keynote

MOTIVATING CASE STUDY :
FINITE IMPULSE RESPONSE (FIR) FILTER

8

© 2012 Altera Corporation—FPL 2012 Keynote

FIR Filter Example

9

TAPS (N=7)

© 2012 Altera Corporation—FPL 2012 Keynote

Custom Multithreaded Pipeline

 Throughput of 1

thread per cycle

is possible using

a direct HW

implementation

 FPGA offers

custom pipeline

parallelism

which can be

perfectly tailored

to the FIR filter

10

Thread 0

1
2

3

4

 
i

ixihy)0()(]0[

 
i

ixihy)1()(]1[

 
i

ixihy)2()(]2[

 
i

ixihy)3()(]3[

 
i

ixihy)4()(]4[

C
lo

c
k
 C

y
c
le

s

© 2012 Altera Corporation—FPL 2012 Keynote

11

Absolute Performance Comparison (FIR)

0

20

40

60

80

100

120

140

160

180

CPU

GPU

FPGA

P
e
rf

o
rm

a
n
c
e
 (

m
e
g
a
 s

a
m

p
le

s
/s

e
c
o
n
d
)

TAPS (N)

*Filter too large to fit without serialization

© 2012 Altera Corporation—FPL 2012 Keynote

12

Power Comparison (FIR)

0

10

20

30

40

50

60

70

80

CPU

GPU

FPGA

TAPS (N)

P
o
w

e
r

(W
a
tt
s
)

© 2012 Altera Corporation—FPL 2012 Keynote

13

Performance-to-Power Ratio (FIR)

0

50

100

150

200

250

300

350

CPU

GPU

FPGA

TAPS (N)

P
e
rf

o
rm

a
n
c
e
 (

m
e
g
a
 s

a
m

p
le

s
/s

e
c
o
n
d
/W

)

© 2012 Altera Corporation—FPL 2012 Keynote

FPGAs for Computation

 Although the FIR filter is a simple example, it is

representative of a large class of applications
 Large amounts of spatial locality

 Computation can be expressed as a feed forward pipeline

 The fine grained parallelism of the FPGA can be

used to create custom ―processors‖ that are

orders of magnitude more efficient than CPUs or

GPUs

14

© 2012 Altera Corporation—FPL 2012 Keynote

Future Forecast

 Vendors see GPU acceleration as having a

dramatic impact on HPC in the next two years

 FPGAs could not even be spelled correctly

Source: Intersect360 Research Report, 2010

© 2012 Altera Corporation—FPL 2012 Keynote

Why not FPGAs?

 David Mayhew, AMD fellow [IMA: High
Performance Computing and Emerging
Architectures]
 ―Availability of cost-effective, massively-parallel, floating-point and

scalar accelerators crucial to many HPC workloads

 I apologize profusely to the FPGAs crowd who believe that FPGAs
are going to somehow become relevant in this space, but I believe
that it is GPUs or nothing (nothing meaning that general-purpose
processors do everything).

 FPGAs have been 3 years away from being standard system
components for the last 10 years and will be for the next 10 years

 Die-stacking may affect this bit of cynicism/pessimism

 A layer of FPGA in a standard, vertical processor/memory stack
may make FPGAs inexpensive enough and generally useful
enough to achieve general system integration‖

Source: http://www.ima.umn.edu/2010-2011/W1.10-14.11/activities/Mayhew-David/Minn-Jan-11%5B2%5D.pptx

© 2012 Altera Corporation—FPL 2012 Keynote

THE COMPETITION

17

© 2012 Altera Corporation—FPL 2012 Keynote

void coarse_grained_serial (…) {

 ...

}

void parallel_kernel(float ...)
{

 ...

}

void main() {

 ...

 parallel_function<<...>>(..);

 serial_function(..);

 ...

}

OpenCL/CUDA Application Code

Heavy parallel workload on the GPU

Serial routines on the CPU

CPUs & GPUs

© 2012 Altera Corporation—FPL 2012 Keynote

GPU Power Consumption

 High-end GPU cards may exceed 250W power

requirements

© 2012 Altera Corporation—FPL 2012 Keynote

Datacenter Applications

 A facility used to house a large farm of servers and

associated components
 Connectivity, storage and cooling

 FPGAs & GPUs can only reasonably address a specific

class of datacenters:
 High Performance Technical Computing (HPTC)

 Scientific or Engineering Computations

 High Performance Business Computing (HPBC)

 Financial Calculations, Analytics

 Almost 20% of the entire server market

© 2012 Altera Corporation—FPL 2012 Keynote

Power & Cooling

 Power and cooling has become a top concern

among HPC data centers
 Energy prices have been hovering at near historic levels

 Processor based design has increasingly come up against the

power wall

 More challenging to obtain higher single-core performance while

maintaining reasonable power

 Companies are increasingly sensitive about reducing their carbon

footprint

 The ―Green Movement‖

Source: IDC, 2010

© 2012 Altera Corporation—FPL 2012 Keynote

Power & Cooling (2)

 HPC data centers‘ average per site:
 Available floor space over 26,000 ft

 Used floor space about 17,000 ft

 Annual power consumption 6.3 MW

 Data centers costs
 Annual power cost was $2.9 million or $456 per KW

 Ten sites provided the percentage of their budget spent on power

 Average was 23%

 Cooling Upgrades
 Average amount budgeted is $6.87 million

Source: IDC, 2010

© 2012 Altera Corporation—FPL 2012 Keynote

Power & Cooling (3)

 GPUs have massive power requirements

 Power and Cooling are one of the key datacenter

drivers

 GPUs are seen as having a bright future in HPC

servers

 It doesn’t add up

© 2012 Altera Corporation—FPL 2012 Keynote

CHALLENGES

24

© 2012 Altera Corporation—FPL 2012 Keynote

HPC GAPs

 Programming Models & Memory Performance

highlighted as the largest GAPs

Source: Intersect360 Research Report, 2010

© 2012 Altera Corporation—FPL 2012 Keynote

main(…)

{

 for(…)

 {

}

Software Programmer’s View

 Programmers are used to software-like environments
 Ideas can easily be expressed in languages such as ‗C‘

 Typically start with simple sequential program

 Use parallel APIs / language extensions to exploit multi core for

additional performance.

 Compilation times are almost instantaneous

 Immediate feedback and rich debugging tools

26

main(…)

{

 for(…)

 {

}

C
o
m

p
ile

r main(…)

{

 for(…)

 {

}

© 2012 Altera Corporation—FPL 2012 Keynote

FPGA Hardware Design

27

Idle

Request

Ack

Do
Useful

Work

Done

State Machines Datapaths

-1
0
1

=

Idle

Request

Ack

Do
Useful

Work

Done
-1
0
1

=

S
O

C
 I
n
te

rc
o
n
n
e
c
t

125

MHz

250

MHz

B
ri
d
g
e

P
C

Ie
 C

o
re

200

MHz

400

MHz

C
o
n
tr

o
lle

r

M
e
m

o
ry

 P
H

Y

© 2012 Altera Corporation—FPL 2012 Keynote

Design Entry Complexity

 Description of these circuits is done through

Hardware Design Languages such as VHDL or

Verilog

 Incredibly detailed design must be done before a

first working version is possible
 Cycle by cycle behavior must be specified for every register in the

design

 The complete flexibility of the FPGA means that the designer

needs to specify all aspects of the hardware circuit

 Buffering, Arbitration, IP Core interfacing, etc

28

© 2012 Altera Corporation—FPL 2012 Keynote

FPGA CAD / Compilation is Complex

 Sophisticated optimization algorithms are used in
each step and lead to significantly longer runtimes
than a software compile (hours vs. minutes)

29

Synthesis

y

Logic

Block
Logic

Block

y

Technology

Mapping

Clustering

Placement

Routing

© 2012 Altera Corporation—FPL 2012 Keynote

Timing Closure Problems

 Designers will often have to go through numerous

iterations to meet timing requirements

30

HDL

Synthesis,

Tech Map

Cluster

Place,
Route

Timing
Analysis

Design
Change

Timing Not Met

© 2012 Altera Corporation—FPL 2012 Keynote

Design Scalability

 Using RTL design entry, there is significant work in

porting applications from generation to generation of

FPGA technology

31

 Ideally a 2x improvement

in logic capacity should

translate into 2x

performance

 In addition to doubling the

datapath, control logic and

SOC interconnect need to

change as well

© 2012 Altera Corporation—FPL 2012 Keynote

Portability

 What happens when a designer wants to try their

algorithm on another platform?
 Would it be better on a CPU, GPU or DSP processor?

32

VHDL

Verilog

IP

Interconnect

© 2012 Altera Corporation—FPL 2012 Keynote

Fundamental challenges

 Implementing an algorithm on an FPGA is done

by designing hardware
 Difficult to design, verify and code for scalable performance

 Generally, software programmers will have

difficulty using FPGAs as massive multi-core

devices to accelerate parallel applications

 Need a programming model that allows the

designer to think about the FPGA as a

configurable multi-core device

33

© 2012 Altera Corporation—FPL 2012 Keynote

An ideal programming environment …

 Has the following characteristics:
 Based on a standard multicore programming model rather than

something which is FPGA-specific

 Abstracts away the underlying details of the hardware

 VHDL / Verilog are similar to ―assembly language‖ programming

 Useful in rare circumstances where the highest possible efficiency is
needed

 The price of abstraction is not too high

 Still need to efficiently use the FPGA‘s resources to achieve high
throughput / low area

 Allows for software-like compilation & debug cycles

 Faster compile times

 Profiling & user feedback

34

© 2012 Altera Corporation—FPL 2012 Keynote

OPENCL : THE ANSWER ?

35

© 2012 Altera Corporation—FPL 2012 Keynote

The BIG Idea behind OpenCL

 OpenCL execution model …

 Define N-dimensional computation domain

 Execute a kernel at each point in computation domain

void

trad_mul(int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i=0; i<n; i++)

 c[i] = a[i] * b[i];

}

Traditional loops
kernel void

dp_mul(global const float *a,

 global const float *b,

 global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL

Parallelism is Explicit

© 2012 Altera Corporation—FPL 2012 Keynote

Accelerator

OpenCL Programming Model

37

Host

L
o
c
a
l M

e
m

G
lo

b
a
l M

e
m

L
o
c
a
l M

e
m

L
o
c
a
l M

e
m

L
o
c
a
l M

e
m

Accelerator Accelerator Accelerator Processor

__kernel void
sum(__global float *a,
 __global float *b,
 __global float *y)
{
 int gid = get_global_id(0);
 y[gid] = a[gid] + b[gid];
}

main() {
 read_data(…);
 maninpulate(…);
 clEnqueueWriteBuffer(…);
 clEnqueueNDRange(…,sum,…);
 clEnqueueReadBuffer(…);
 display_result(…);
}

 Typical challenges:
 Global/local memory bandwidth

 Limited floating point cores

 Thread occupancy

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL Host Program

 Pure software written in standard ‗C‘

 Communicates with the Accelerator Device via a

set of library routines which abstract the

communication between the host processor and

the kernels

38

main()
{
 read_data_from_file(…);
 maninpulate_data(…);

 clEnqueueWriteBuffer(…);
 clEnqueueTask(…, my_kernel, …);
 clEnqueueReadBuffer(…);

 display_result_to_user(…);
}

Copy data from

Host to FPGA

Ask the FPGA

to run a

particular kernel

Copy data from

FPGA to Host

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL Kernels
 Data-parallel function

 Defines many parallel threads

of execution

 Each thread has an identifier

specified by ―get_global_id‖

 Contains keyword extensions

to specify parallelism and

memory hierarchy

 Executed by compute

object
 CPU

 GPU

 Accelerator

39

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

__kernel void sum(…);

float *a =

float *b =

float *answer =

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7

© 2012 Altera Corporation—FPL 2012 Keynote

Mapping OpenCL Programs

40

x86

PCIe

ACL

Compiler
Standard

C Compiler

SOF X86 binary

OpenCL

Host Program + Kernels

© 2012 Altera Corporation—FPL 2012 Keynote

FPGA

FPGA OpenCL Architecture

41

Modest external memory bandwidth

Extremely high internal memory bandwidth

Highly customizable compute cores

Kernel

Pipeline

Kernel

Pipeline

Kernel

Pipeline

PCIe

D
D

R
*

x86 /

External

Processor

External

Memory

Controller

& PHY

M9K

M9K

M9K

M9K

M9K

M9K

Global Memory Interconnect

Local Memory Interconnect

External

Memory

Controller

& PHY

© 2012 Altera Corporation—FPL 2012 Keynote

Compiling OpenCL to FPGAs

42

x86

PCIe

ACL

Compiler
Standard

C Compiler

SOF X86 binary

OpenCL

Host Program + Kernels

main()
{
 read_data_from_file(…);
 maninpulate_data(…);

 clEnqueueWriteBuffer(…);
 clEnqueueKernel(…, sum, …);
 clEnqueueReadBuffer(…);

 display_result_to_user(…);
}

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

Kernel Programs

Host Program

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

PCIe

DDRx

© 2012 Altera Corporation—FPL 2012 Keynote

Mapping Multithreaded Kernels to FPGAs

 The most simple way of mapping kernel functions

to FPGAs is to replicate hardware for each

thread
 Inefficient and wasteful

 Better method involves taking advantage of

pipeline parallelism
 Attempt to create a deeply pipelined representation of a kernel

 On each clock cycle, we attempt to send in input data for a new

thread

 Method of mapping coarse grained thread parallelism to fine-

grained FPGA parallelism

43

© 2012 Altera Corporation—FPL 2012 Keynote

Example Pipeline for Vector Add

 On each cycle the portions of the
pipeline are processing different
threads

 While thread 2 is being loaded,
thread 1 is being added, and
thread 0 is being stored

Load Load

Store

0 1 2 3 4 5 6 7

8 threads for vector add example

Thread IDs

44

+

© 2012 Altera Corporation—FPL 2012 Keynote

Example Pipeline for Vector Add

 On each cycle the portions of the
pipeline are processing different
threads

 While thread 2 is being loaded,
thread 1 is being added, and
thread 0 is being stored

Load Load

Store

0
1 2 3 4 5 6 7

8 threads for vector add example

Thread IDs

45

+

© 2012 Altera Corporation—FPL 2012 Keynote

Example Pipeline for Vector Add

 On each cycle the portions of the
pipeline are processing different
threads

 While thread 2 is being loaded,
thread 1 is being added, and
thread 0 is being stored

Load Load

Store

0

1
2 3 4 5 6 7

8 threads for vector add example

Thread IDs

46

+

© 2012 Altera Corporation—FPL 2012 Keynote

Example Pipeline for Vector Add

 On each cycle the portions of the
pipeline are processing different
threads

 While thread 2 is being loaded,
thread 1 is being added, and
thread 0 is being stored

Load Load

Store

1

2

3 4 5 6 7

8 threads for vector add example

Thread IDs

47

+

0

© 2012 Altera Corporation—FPL 2012 Keynote

Example Pipeline for Vector Add

 On each cycle the portions of the
pipeline are processing different
threads

 While thread 2 is being loaded,
thread 1 is being added, and
thread 0 is being stored

Load Load

Store

2

3

4 5 6 7

8 threads for vector add example

Thread IDs

48

+

0

1

© 2012 Altera Corporation—FPL 2012 Keynote

ALTERA OPENCL SYSTEM

ARCHITECTURE

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL System Architecture

50

FPGA

Kernel

Pipeline

Kernel

Pipeline

Kernel

Pipeline

PCIe

D
D

R
*

x86 /

External

Processor

External

Memory

Controller

& PHY

M9K

M9K

M9K

M9K

M9K

M9K

Global Memory Interconnect

Local Memory Interconnect

External

Memory

Controller

& PHY

External Interface

© 2012 Altera Corporation—FPL 2012 Keynote

External Interface : High Level

51

PCIe

DMA

DDR

Controller

K0 K1 K2 Kn

Kernel Pipelines

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL System Architecture

52

FPGA

Kernel

Pipeline

Kernel

Pipeline

Kernel

Pipeline

PCIe

D
D

R
*

x86 /

External

Processor

External

Memory

Controller

& PHY

M9K

M9K

M9K

M9K

M9K

M9K

Global Memory Interconnect

Local Memory Interconnect

External

Memory

Controller

& PHY

Kernel System

© 2012 Altera Corporation—FPL 2012 Keynote

[filename]_system

[kernel]_top_wrapper

Altera OpenCL Kernel Architecture

 MEM1

 MEM0
Global Memory

Interconnect Constant Cache

LOCAL

MEM

#0

LOCAL

MEM

#2

LOCAL

MEM

#3

Local Memory

Interconnect

Local Memory

Interconnect

Local Memory

Interconnect

[kernel]_function_wrapper

CRA

LOCAL

MEM

#1

Local Memory

Interconnect

D
is

p
a
tc

h
e
r

C
S

R

N
D

R

A
R

G
 0

A
R

G
 1

…

ID
 I
T

E
R

ID

 I
T

E
R

[kernel]_function

BB0 BB0

BB0

BB0

[kernel]_function

BB0 BB0

BB0

BB0

D
O

N
E

EWI

EWI

53

Kernel Pipelines

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL CAD Flow

vectorAdd_kernel.cl
vectorAdd_host.c

CLANG

front end

System

Description
C

compiler

ACL

runtime

Library

program.exe

Optimizer

Unoptimized

LLVM IR

Optimized

LLVM IR

RTL

generator
Verilog

PCIe

DDR*
ACL

iFace

CLANG

front end

Unoptimized

LLVM IR

Front End
Parses OpenCL extensions

and intrinsics – produces

LLVM IR

54

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL CAD Flow

vectorAdd_kernel.cl
vectorAdd_host.c

CLANG

front end

C

compiler

ACL

runtime

Library

program.exe

Optimizer

Unoptimized

LLVM IR

Optimized

LLVM IR

PCIe

DDR*
ACL

iFace

Optimizer

Optimized

LLVM IR

Middle End
~150 compiler passes such

as loop fusion, auto

vectorization, and branch

elimination leading to more

efficient HW

55

RTL

generator
Verilog

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL CAD Flow

vectorAdd_kernel.cl
vectorAdd_host.c

CLANG

front end

C

compiler

ACL

runtime

Library

program.exe

Optimizer

Unoptimized

LLVM IR

Optimized

LLVM IR

RTL

generator
Verilog

PCIe

DDR*
QSYS

Quartus RTL

generator
Verilog

Back End
•Instantiate Verilog IP for

each operation in the

intermediate representation

•Create control flow

circuitry to handle loops,

memory stalls and

branching

•Traditional optimizations

such as scheduling and

resource sharing

56

© 2012 Altera Corporation—FPL 2012 Keynote

CASE STUDIES

57

© 2012 Altera Corporation—FPL 2012 Keynote

Applications from Different Domains

 Document Filtering
 Simplified information filtering benchmark

 High on BW, low on compute

 All about moving the data efficiently

 Detailed study in:

 Doris Chen, Deshanand Singh, ―Invited Paper: Using OpenCL to

evaluate the efficiency of CPUs, GPUs, and FPGAs for

Information Filtering‖, FPL‘2012.

 Monte Carlo Black Scholes Computation
 Financial Benchmark to compute derivative prices

 Heavy on compute, low on BW requirements

 The vast majority of data and communications are kept onchip

58

© 2012 Altera Corporation—FPL 2012 Keynote

EXAMPLE: INFORMATION

FILTERING

59

© 2012 Altera Corporation—FPL 2012 Keynote

Information Filtering

 Filter document feeds for content which matches
particular user search profiles

 Examples:
 News articles which match a particular interest list

 Newly published conference or journal papers which are in your
research area

60

Dynamic

Database

Frontend

Aggregation

Feed 1

Feed N

Document

Scoring

P1 P2
P

M
Search Profiles

Report /

HTML

Generation

Focus of this study

© 2012 Altera Corporation—FPL 2012 Keynote

General Idea

 Documents are converted into

bag of words format:

 (t1,f1), (t2, f2), (tn, fn)

 8 bits for the frequency

 24 bits for the term ID

 Search profiles have the

format:

 (t1,w1), (t2, w2), (tn, wn)

 64 bit fixed point representations

of the weights

 Documents are scored using

the following:

61

Wt #

Document

Representation

Freq #

1
4
6
41
68
71
90

4
50
71

x

x

∑

Score

)(),(i

Doct

i twfPDocScore
i






© 2012 Altera Corporation—FPL 2012 Keynote

Simple Initial OpenCL Implementation

 Process each document as one parallel thread

62

© 2012 Altera Corporation—FPL 2012 Keynote

Parameterizing the code

 Some architectures (FPGAs, GPUs) make use of

memory coalescing optimizations where efficient

requests are made in the case where:
 Consecutive threads access consecutive memory locations

 Note that T=1 is the same as having one document processed

per parallel thread

63

t0 t1 t2

doc

0

doc

1

doc

2
1st iter

2nd iter

Simple Implementation

doc

0

doc

1

doc

2

1st iter t[0..2]

2nd iter t[0..2]

Each Doc subdivided into

T threads

© 2012 Altera Corporation—FPL 2012 Keynote

64

DDRx Configuration

DDRx

SDRAM
Memory

Controller
System

64 bits

800Mbps

256 bits

200MHz

256 bits

200MHz

400MHz 200MHz* 200 MHz* 200 MHz* 400MHz*

DDRx

SDRAM
Memory

Controller
System

64 bits

1600Mbps

512 bits

200MHz

512 bits

200MHz

800MHz 200MHz 200 MHz 200 MHz 800MHz

Memory

PHY

Memory

PHY

* This frequency target is an example only, it does not reflect the actual frequency configuration that is supported by DDRx controller

Half Rate

Quarter Rate

W
id

e
 B

u
s
s

e
s

© 2012 Altera Corporation—FPL 2012 Keynote

65

Load/Store Memory Coalescing

 External memory has wide words (256 bits)

 Loads/stores typically access narrower words (32

or 128 bits)

 Given a sequence of loads/stores, we want to

make as few external memory read/write

requests as possible

32

256-bit DDR word

32 32 32 32 32 32 32

© 2012 Altera Corporation—FPL 2012 Keynote

Load/Store Memory Coalescing

 Coalescing is important for good performance
 Combine loads/stores that access the same DDR word or the one

ahead of the previously-accessed DDR word

 Make one big multi-word burst request to external memory whenever

possible

 Fewer requests  less contention to global memory

 Contiguous bursts  less external memory overhead

66

1000 1001 1002 1003 1004 1005 1006 1007 100a 100c 100d

Load/Store Addresses (128-bit words):

1 burst request for 4 DDR words 1 word 1 word

 3 requests in total

© 2012 Altera Corporation—FPL 2012 Keynote

Bloom Filtering

 Most entries in the search profile are ZERO
 User typically only cares about some subset of the terms present in

all documents

 A simple hashing strategy can be used to filter out
unnecessary requests to external memory

 Bloom filters are generalizations where multiple hash
functions can be used

 The size of the bloom filter directly impacts the
number of false positives leading to external memory
accesses

67

© 2012 Altera Corporation—FPL 2012 Keynote

Test Platforms

68

Test

Platform

Specs Process External

Memory

BW

Cache

Size

Board

Power

Multi-Core

CPU

Intel Xeon

W3690

32nm 32 GB/s 12 MB 130W

GPU NVIDIA

Tesla

C2075

40nm 144 GB/s 768 MB 215W

FPGA Altera

Stratix-IV

530  DE4

40nm 12.8 GB/s No

hardened

cache

21W

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL on CPU

 Version 1.5 of the Intel OpenCL SDK has

Autovectorizing capabilities that allow the Kernel

to take advantage of SSE* instructions.
 Need to use these to get a fair comparison of the CPU baseline

69

Source: http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.pdf

© 2012 Altera Corporation—FPL 2012 Keynote

CPU Results

Configuration MT / s MT / J

T=1, no bloom filter 196 1.5

T=1, bloom filter (32k) 1614 12.4

T=1, bloom filter (64k) 2070 15.9

T=1, bloom filter (128k) 1717 13.2

T=2, bloom filter (64k) 1949 15.0

T=4, bloom filter (64k) 442 3.4

70

 T=1 leads to the best performance
 Entire documents can be fetched into local caches

 Large bloom filters can be used and entirely kept in the

cache

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL on GPU

 Hierarchical Memory

Model
 Constant  used to hold

lookup table data that is

unchanging during the run

of a program

 Local Memory 

Scratchpad space where

threads can share

information / intermediate

results

 Global  Off chip DDR

memoy

71

© 2012 Altera Corporation—FPL 2012 Keynote

GPU Results
Configuration MT / s MT / J

T=128, no bloom filter 671 3.1

T=128, bloom filter (32k, constant) 1138 5.3

T=128, bloom filter (32k, local) 501 2.3

T=128, bloom filter (32k, global) 2499 11.6

T=64, bloom filter (32k, global) 2196 10.2

T=256, bloom filter (32k, global) 2381 11.1

T=512, bloom filter (32k, global) 1695 7.9

T=128, bloom filter (64k, global) 1923 8.9

T=128, bloom filter (16k, global) 3240 15.1

T=128, bloom filter (8k, global) 2798 13.0

T=128, simple hash (8k, global) 2515 11.7

72

 Small bloom filter (16K) which is stored in ―global‖
memory performs the best
 Tesla C2075 has a cache which likely holds the entire

bloom filter

© 2012 Altera Corporation—FPL 2012 Keynote

OpenCL on FPGA

 One of the key innovations in the Altera OpenCL

compiler is the ability to create a ―soft logic‖

cache for constant data

73

Bloom Filter

DDR2 Interfaces

PCIe
x86

Server
Const

Cache

SIV-530

DDR2-800 DDR2-800

Document Score

Profile Weights

Document Collection

Request Ports 1x

Clock

2x

Clock

Data Data

On Chip RAM

© 2012 Altera Corporation—FPL 2012 Keynote

FPGA Results

Configuration MT / s MT / J

T=64, no bloom filter 50 2.4

T=64, bloom filter (32k, constant) 1637 77.9

T=64, bloom filter (64k, constant) 1755 83.6

T=32, bloom filter (64k, constant) 1535 73.1

Extrapolated: FPGA +

Double Bandwidth

2925 117

Hand coded FPGA solution [1] 772 N/A

74

[1] Sai Rahul Chalamalasetti, Martin Margala, Wim Vanderbauwhede, Mitch Wright, Parthasarathy

Ranganathan: Evaluating FPGA-acceleration for real-time unstructured search. ISPASS 2012: 200-209

 FPGA solution is completely limited by external memory

bandwidth

 Notice the tremendous impact of the bloom filter on

ensuring that the bandwidth is not wasted

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chalamalasetti:Sai_Rahul.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Margala:Martin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Margala:Martin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wright:Mitch.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ranganathan:Parthasarathy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ranganathan:Parthasarathy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ranganathan:Parthasarathy.html
http://www.informatik.uni-trier.de/~ley/db/conf/ispass/ispass2012.html

© 2012 Altera Corporation—FPL 2012 Keynote

Overall Results

 Kernel is able to filter documents at a rate of 11.7

GBYTES / second

 Achieves much better performance / watt than

GPU or CPU

 With a slightly better board design, the FPGA can

almost match the GPU in terms of pure

performance while consuming 190W less
 200W equates to approx $300 / year in power costs

75

Platform Perf/Watt (MT / J)

Statix IV-530 83.6  117 (extrapolated)

Xeon W3690 15.9

Tesla C2075 GPU 15.1

© 2012 Altera Corporation—FPL 2012 Keynote

EXAMPLE: MONTE CARLO

BLACK SCHOLES

76

© 2012 Altera Corporation—FPL 2012 Keynote

Finance : Equity Derivative Pricing

 Monte Carlo simulation of all possible paths for the
underlying equity value

77

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0
0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

0
.5

5

0
.6

0

0
.6

5

0
.7

0

0
.7

5

0
.8

0

0
.8

5

0
.9

0

0
.9

5

1
.0

0

200 simulations

~ 100,000 simulations may be required to achieve a result that is accurate enough

© 2012 Altera Corporation—FPL 2012 Keynote

Overall Algorithm Architecture

 Approximately 300 lines of OpenCL code can be
used to describe this entire application

 Portable from CPU to GPU to FPGA with no
changes

 Currently implemented with IEEE 754 single
precision
 Possible extension to extended single precision (36 bit mantissa)

Mersenne

Twister

Uniform Random

Number Generator

Inverse

Normal

Cumulative Density

Function

Geometric

Brownian

Motion

European

Call

Option

Valuation

78

© 2012 Altera Corporation—FPL 2012 Keynote

Example : Inverse Normal CDF
float ltqnorm(float p)
{
 floatq, r;

 errno = 0;

 if (p < 0 || p > 1)
 {
 return 0.0;
 }
 else if (p == 0)
 {
 return -HUGE_VAL /* minus "infinity" */;
 }
 else if (p == 1)
 {
 return HUGE_VAL /* "infinity" */;
 }
 else if (p < LOW)
 {
 /* Rational approximation for lower region */
 q = sqrt(-2*log(p));
 return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
 ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
 }
 else if (p > HIGH)
 {
 /* Rational approximation for upper region */
 q = sqrt(-2*log(1-p));
 return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
 ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
 }
 else
 {
 /* Rational approximation for central region */
 q = p - 0.5;
 r = q*q;
 return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q /
 (((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1);
 }
}

•This computation

contains complex

functions such as sqrt

and log

•GPUs cannot execute

this code as efficiently as

FP Adds and Mults

79

Instruction Cache

Register File

SFU

SFU SP SP

SP SP

Uniform Cache

Interconnect Network

SFU

SFU

Warp Scheduler Warp Scheduler

Dispatcher Dispatcher

SP SP

SP SP

SP SP SP SP

LD/ST

LD/ST

LD/ST

Shared Memory/L1 Cache

© 2012 Altera Corporation—FPL 2012 Keynote

Throughput & Power Comparison

Power Throughput

C2075 (GPU) 215W 2098 MSims/second

SIV530 (DE4) 21W 2181 MSims/second

80

 C2075 : NVIDIA‘s accelerator card
 Based on the ―Fermi‖ architecture

 40nm – 570 mm2

 1.15 GHZ

 448 Cores

 1.03 Teraflops of single-precision performance

 144 GB/second global memory bandwidth

 PCIe Gen2 x 16

© 2012 Altera Corporation—FPL 2012 Keynote

RESEARCH AND

RECOMMENDATIONS

81

© 2012 Altera Corporation—FPL 2012 Keynote

Recommendations

 Fundamentally new areas of FPGA research need to
be undertaken
 Standard programming models

 Tool usability (debugging, profiling)

 Develop boards that are meant for algorithm
acceleration

 Have the entire software stack ready to support this
board
 A high level language compile (OpenCL or others)

 Debugging & Profiling

 Libraries that are pre-optimized for best possible implementation on
the FPGA

82

© 2012 Altera Corporation—FPL 2012 Keynote

Recommendations (2)

 Don‘t underestimate the GPU

 Potential to infiltrate the ―traditional server‖

market
 Eg. Speed up database queries for companies like Amazon &

Ebay

 IEEE Spectrum Article : "Why Graphics Processors will Transform

Database Processing", Blas and Kladeway, Oracle Corporation

 FPGA hardware is ideally suited to these kinds of

matching algorithms
 Need tools for people to harness the power

83

http://www.google.com/imgres
http://www.google.com/imgres

© 2012 Altera Corporation—FPL 2012 Keynote

Current OpenCL System Architecture

84

Global Memory

Kernel0 Kernel1
Kernel

N
Kernel2

Host Processor

…

High demand on CPU

Memory-to-memory paradigm

© 2012 Altera Corporation—FPL 2012 Keynote

Desired Architecture (OpenCL Pipes)

85

Global Memory

Kern0 Buffer Buffer Kern1
Buffer

Buffer

KernN
p

1-p

Traffic

Manager

Kern2

Traffic

Manager

Buffer

Host Processor

Initialize()

CPU: Configure and “Go”

Stream orientation when needed

