

Going beyond the FPGA with Spacetime

Programmable devices: good news and bad news

- The good news
 - Programmable!
 - On leading-edge process node
- The bad news
 - Very expensive!
 - Very large!
 - Very slow!
 - Very power-hungry!
 - Very hard to program (vs. CPU)!
 - Controlled by a duopoly
- How can we build something better than an FPGA?

FPGA → 3PLD

FPGA → 3PLD

FPGA → 3PLD

© 2012 Tabula

5

Dimension is a well-defined mathematical term

- Wikipedia: "the dimension of a space or object is [...] the minimum number of coordinates needed to specify any point within it."
- Each LUT in Spacetime requires 3 coordinates to identify uniquely
 - I.e., (x,y,t), which can also be represented as (x,y,z)
- Thus, Spacetime is 3-dimensional <u>literally</u>
 - Not "virtually"!
- FPGAs have only one layer of LUTs: they are 2-D
 - Like ASICs, they have many layers of interconnect
- Each LUT in an interposer-enhanced FPGA can still be uniquely identified by two coordinates: (x,y)
 - The interposer just adds more layers of interconnect
- Thus, interposer-enhanced FPGAs are also 2-dimensional

Implementing the third dimension in Spacetime

A very small sample of the interesting problems

- How can you close timing?
- Can you achieve high performance?
- Doesn't the time to reconfigure kill you?
- Where does the state go during reconfiguration?
- How do you map designs to this fabric?
- Do you have to design differently for such an architecture?
- Interaction between asynchronous domains
- How do memories work?
- Isn'tthe power awful?

- Can you build an analytical placer in Spacetime?
- Interaction between related clock domains
- What does the router look like?
- How do you compute minimal spanning trees?
- How do you compute Steiner trees?
- How do you account for the reconfiguration time in timing-driven P&R?
- How is logic synthesis affected by Spacetime?
- What does clock gating look like in Spacetime?
- How does DSP work?

This talk

tābula. Some logic must be fast, but most logic can be slow

Stylus[™] software automatically co-optimizes space and time

Spacetime memories

Spacetime memories are fast and have lots of ports

Stylus infers multi-ported memories automatically from RTL

Spacetime memories

- Spacetime memories can use single-ported RAM cells
 - Half the size of the dual-ported RAM cells in FPGAs
- 2 GHz throughput faster than most ASICs
 - 2 GHz <u>in practice</u> → >3x faster than dual-ported FPGA memory
 - Great for 100 Gbps networking
- 12 different pieces of logic can be adjacent to the same memory!
 - Very low latency
- DSPs can be fed at 2 GHz
 - → DSPs can run at 2 GHz in practice
- Multiple user memories can be "folded" into one Spacetime memory
 - Non-overlapping bits in space
 - Non-overlapping ports in time
- So, <u>multiple</u> pieces of logic can be simultaneously adjacent to <u>multiple</u> memories!

Programmable devices are about interconnect

FPGA performance bogged down by long wires (= slow interconnect)

Spacetime addresses the interconnect bottleneck

Everything can run at 2 GHz on our chips

Stylus: integrated design system

- Completely integrated design environment
 - Project management
 - HDL and Schematic browsing
 - Timing analysis and correlation back to HDL
 - I/O Pin and Board planning

- ..

Achieving high performance with Spacetime,

Space

Achieving high performance with Spacetime

Space

Advanced Spacetime technique: extension

- Used pervasively by Spacetime P&R to optimize timing
 - Hides subcycle boundaries; treats time as continuous
 - Local reduction in foldedness of design
 - Removes quantization effects and reconfiguration timing 'tax'
- Allows design to run at maximum foldedness
 - More folds is <u>always</u> better
- Vital for high-performance, reconfigurable computing

Sequential timing: much easier timing closure

Sequential timing and rescheduling

- User state elements are simply a convenient way to name values
 - E.g., "the one that showed up here <u>last</u> time" vs. "... this time"
- Their meaning is just "a wire in Z" in Spacetime
- Must still meet externally visible timing requirements, but...
- Have tremendous flexibility to reschedule operations
 - To optimize area, performance, and power
- Spacetime enables very fine resolution of time
 - E.g., 500 ps folds vs. 5 ns cycles
- Rescheduling is as powerful as retiming, but it is <u>not</u> retiming
- Does not change netlist or ordering: preserves simulation behavior!
 - Can preserve user's notion of state (and names!)
- P.S., "parallel" computing is not about parallelism....
- It's about rescheduling computations while preserving correctness

Achieving <u>really</u> high performance

...and merging domains for better P&R

Mapping designs to Spacetime

- Objective: "Hide the Revolution"
 - Support traditional design methodology with RTL and SDC
 - Automatically map the designs to Spacetime (as though to ASIC or FPGA)
- Key observation: view the chip as 3-D!
 - Do not separate spatial placement from temporal scheduling
 - Do timing-driven placement in 3-D
- Spacetime geometry is Minkowski not Euclidean or Manhattan
 - Component's sinks must be in its light cone

2012 Tabula

Minkowski's spacetime in two dimensions

Minkowski spacetime in three dimensions

Minkowski spacetime in three dimensions, cont.

Spacetime cones live on a torus

Managing asynchronous clock domains

- Designs with multiple, unrelated clock domains are ubiquitous
 - I/O standards
 - IP
 - Debug/monitoring module
- Need a way to transmit data between domains
- Problem: metastability!
 - Unavoidable
- Mitigation strategy: time
 - Longer wait time → reduced probability of metastability
- Three common implementation strategies in non-Spacetime parts
 - Asynchronous FIFO
 - Dual-clocked RAM
 - Chain of state elements (e.g., flops)

Managing asynchronous domains in Spacetime

- Asynchronous FIFO
 - Hard asynchronous FIFO in every SerDes and every Parallel I/O
 - Pushes much asynchrony "to the boundary"
- Dual-clocked RAM
 - Many dual-clocked RAMs
 - When single-clocked, act as dual-ported <u>per subcycle</u>
- Chain of state elements (e.g., flops)
 - Need to wait for τ ns
 - On a spatial part, wait time is in quanta of user cycles (e.g., 3.5 6 ns)
 - In Spacetime, quantum is duration of <u>fold</u> e.g., 500 ps
- Thus, latency of asynchronous communication can be much lower in Spacetime
- Advanced: ratiochronous domains can often implement asynchronous domains

2012 Tabula 2

tabula. P

Power

- There are four components to Spacetime power
 - Static / Leakage
 - Dynamic / "User"
 - I/O
 - Reconfiguration
- Spacetime can offer <u>much lower leakage power</u>
 - ~1/3 the die area of FPGA for a given function
 - Leakage is becoming dominant at advanced process nodes
- Spacetime can offer somewhat lower dynamic power!

Dynamic power is <u>lower</u> with Spacetime

Dynamic power is <u>lower</u> with Spacetime

- Same amount of work in the same amount of time
- Same amount of dynamic power
- But...
- Our wires are much shorter: factor of $O(\sqrt{n})$
- Thus, Spacetime dynamic power can be <u>lower</u> than the FPGA's ☺

tabula. Power

- There are four components to Spacetime power.
 - Static / Leakage
 - Dynamic / "User"
 - I/O
 - Reconfiguration
- Spacetime can offer <u>much lower leakage power</u>
 - ~1/3 the die area of FPGA for a given function
 - Leakage is becoming dominant at advanced process nodes
- Spacetime can offer somewhat lower dynamic power!
- Spacetime offers roughly equal I/O power
- Spacetime must (uniquely) pay a reconfiguration tax

Horse race between leakage + dynamic and reconfiguration

A new category of programmable device

- 2x MEMORY DENSITY
- 3x MEMORY PORTS
- 4x DSP PERFORMANCE
- 6x LOGIC PERFORMANCE

"...capability unmatched by traditional FPGAs or CPLDs."

"...unmatched capability and affordability."

"...can surpass performance of FPGAs or CPLDs."

tabula.

Summary

- Spacetime dramatically improves density, performance, memory, DSP.
 - Need not cost extra power intrinsically
- Map designs into 3D using the mathematics of special relativity
 - 2 spatial dimensions and 1 time dimension = 3D Minkowski spacetime
- Dynamic reconfiguration is just the first step on a long, fascinating path
 - Significant inventions all along the way
- Many advanced Spacetime techniques
 - Transparent latches in interconnect, extension, rescaling, rescheduling, state as Z wiring, P&R in 3D Minkowski geometry, etc.
- Static scheduling and 3D view opens a new door in computing
- Powerful, alternative perspective from "parallel computing" to exploit massive parallelism of the hardware

Wait 'til you see what happens next!