
CombiningData andComputationTransformations for
Fine-GrainRecon�gurableArchitectures

Cristiano B. de Oliveira and Eduardo Marques

Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil

{cbacelar,emarques}@icmc.usp.br

Abstract

This project aims to develop techniques for optimal code
generation for High Performance Computing using recon-
�gurable hardware. Some problems faced are related to
memory access, since the latency for data reading and
writing became a bottleneck for HPC applications. The
project is a branch of a system for hardware acceleration
in HPC applications currently being developed at Univer-
sity of Sao Paulo, Brazil. This system intends to facilitate
the development of HPC architectures for e�ciently ex-
ploit of parallelism.

Objectives

The project is based on LALP language, aiming to allow
that both execution �ow and memory access can be con-
trolled by the developer.
The main objectives are:

• Evaluation of compilation and optimization focused
on memory access, both on-chip and o�-chip;

• Development of techniques to assist the implemen-
tation of HPC applications through optimized data
management for recon�gurable hardware synthesis;

• Implementation of directives for memory mapping of
arrays that supports pipelining and non-pipelining ac-
cess operations;

• Improvement of LALP functionalities by adding mech-
anisms for large massive data handle.

The current work is focused on translating transformed C
source code into LALP code by using ROSE [1, 2] compiler.
No results are available yet nevertheless some benchmark
tests are expected to be performed soon.

Acknowledgements

The authors would like to thank the
Institute for Mathematical and Com-
puter Sciences (ICMC) at the Univer-
sity of Sao Paulo (USP), for the in-
frastructure provided to develop this
work and FAPESP (the Foundation
for Support Research of the State
of Sao Paulo) for the �nancial sup-
port provided. We also would like
to special thank professor Pedro Di-
niz (USC-ISI) for his visit to ICMC
in May/2011 and his contributions for
the de�nition of this research.

System for Hardware Acceleration in HPC Applications

Aspects

Application C Code

Hardware
Module

Generator

Compiler and
Optmizer

Aspects
Parser &
Analyzer

Genetic
Algorithms

Estimator

Vendor
Specific

Mapping Tools

FPGA

Hardware
Template
Library

Design Space Exploration Engine

Optmization
Goals and
Constraints

VHDL

Core Mapping
Instructions and
Mapping Directives

Transformations
Parameters

Library hardware
design metrics

Bitstream

Real hardware
design metrics

Application C Code

Transformations
Parameters

Front-end

Middle-end LALP v.2

IR

DDG

LALP Annotations

Front-end Processor

Code

VHDL
Core Mapping

Instructions and

Mapping Directives

Back-end

Compilation Module

ROSE-Based Compiler

References

[1] D. Quinlan and C. Liao, �The ROSE Source-to-Source Compiler Infrastruc-
ture,� in Cetus Users and Compiler Infrastructure Workshop, in conjunc-
tion with PACT 2011, 2011, pp. 1�3.

[2] C. Liao, D. Quinlan, T. Panas, and B. de Supinski, �A ROSE-based OpenMP
3.0 research compiler supporting multiple runtime libraries,� Beyond Loop
Level Parallelism in OpenMP: Accelerators, Tasking and More, pp. 15�28,
2010.

[3] R. Menotti, J. M. P. Cardoso, M. Fernandes, and E. Marques, �LALP: A
Language to Program Custom FPGA-Based Acceleration Engines,� Inter-
national Journal of Parallel Programming, vol. 40, pp. 262�289, 2012.

Language for Aggressive Loop Pipelining

LALP [3] (Language for Aggressive Loop Pipelining) is
a language focused on mapping loop structures while ex-
plores the parallelism of portions of code involving loops.
By using LALP is possible to achieve high control of a pro-
gram execution �ow through de�nition of the number of
clock cycles delayed/executed for speci�cs operations.

example (out i n t x l_f ina l , out i n t xr_f ina l , out b i t
done , in b i t i n i t)

{
{ . . . }

counter (i =0; i<16 ; i++@19) ;
i . clk_en = i n i t ;

p_addr = i ;
p_addr = 16 when i . done@1 ;
p_addr = 17 when i . done@3 ;
P_ENC. address = p_addr ;

. . .

d = x l & 0 x f f when i . step@5 ;
c = (x l >> 8) & 0 x f f when i . step@5 ;
b = (x l >> 16) & 0 x f f when i . step@5 ;
a = (x l >> 24) & 0 x f f when i . step@5 ;

s_addr = i ;
s_addr = (0 + a) when i . step@6 ;
s_addr = (256 + b) when i . step@7 ;
s_addr = (512 + c) when i . step@8 ;
s_addr = (768 + d) when i . step@9 ;

. . .
}

Listing 1: Piece of LALP code.

