IC MC[ES? Combining Data and Computation Transformations for
Fine-Grain Reconfigurable Architectures

SAO CARLOS

A FAPESP

Cristiano B. de Oliveira and Eduardo Marques

Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil

{cbacelar,emarques } @icmc.usp.br

Language for Aggressive Loop Pipelining

Abstract

This project aims to develop techniques for optimal code
generation for High Performance Computing using recon-
ficurable hardware. Some problems faced are related to
memory access, since the latency for data reading and
writing became a bottleneck for HPC applications. The

LALP |[3| (Language for Aggressive Loop Pipelining) is
a language focused on mapping loop structures while ex-
plores the parallelism of portions of code involving loops.
By using LALP is possible to achieve high control of a pro-
gram execution How through definition of the number of

project 1s a branch of a system for hardware acceleration
in HPC applications currently being developed at Univer-
sity of Sao Paulo, Brazil. This system intends to facilitate
the development of HPC architectures for efficiently ex-

clock cycles delayed/executed for specifics operations.

final, out bit

example (out int x1 final ,out int xr
done, in bit init)

ploit of parallelism. {
o . counter (i=0; i<16; i+{@19) ;
ObJeCtlveS i.clk en = init ;
The project is based on LALP language, aiming to allow p_addr = 1; ,
p addr — 16 when 1.done@l;

that both execution How and memory access can be con-
trolled by the developer.
The main objectives are:

p addr = 17 when 1i.done@3;
P ENC.address — p addr;

e Evaluation of compilation and optimization focused

on memory access, both on-chip and off-chip; d = x1 & 0xff when i.step@5;
. . . c = (xI > 8) & O0xff when i.step@5;
e Development of techniques to assist the implemen- b = (x1 >> 16) & 0xff when i.step@5;
tation of HPC applications through optimized data a = (x1 >> 24) & O0xff when i.step@5;
management for reconfigurable hardware synthesis; a .
s addr — 13
e Implementation of directives for memory mapping of S_ajjr = 852 a)b‘)fvhefl:l i -§t62@6é7
- I e N _ s addr = —+ when 1.step ;
arrays thaiéosupPorts pipelining and non-pipelining ac s"addr — (512 + c) when i.step@8 .
CESS OPErations; s addr = (768 4 d) when i.step@9;
e Improvement of LALP functionalities by adding mech-
anisms for large massive data handle. 1

The current work is focused on translating transformed C
source code into LALP code by using ROSE |1, 2] compiler.
No results are available yet nevertheless some benchmark
tests are expected to be performed soon.

Listing 1: Piece of LALP code.

System for Hardware Acceleration in HPC Applications

Aspects

Design Space Exploration Engine Real hardware

Aspects . _
design metrics

——| Parser &

H

Analyzer y Y
g Genetic
Optmization Alcorithms Estimator o Compilation Module Front-end Processor
(GGoals and g Library hardware ApphC&thD C Code Code
i 1 design metrics —
Constraints ¥ ROSE-Based Compiler -
TN Vendor . "=
~— Specific >[Front-end] Back-end
Hardware Mapping Tools lIR
Transformations Tgmplate . \ —
Parameters Library Bitstream > Middle-end | (LALP v.2] | =
~ Transformations DDG) T ’ VHDL —
Application C Code *_I Parameters Core Mapping
| L LALP Annotations Instructions and
| Mapping Directives
Compiler and| VHDL Hardware

— Optmizer " Module

Core Mapping
Instructions and

Mapping Directives

Generator

References

Acknowledgements

The authors would like to thank the
Institute for Mathematical and Com-
puter Sciences (ICMC) at the Univer-
sity of Sao Paulo (USP), for the in-
frastructure provided to develop this
work and FAPESP (the Foundation
for Support Research of the State
of Sao Paulo) for the financial sup-
port provided. We also would like
to special thank professor Pedro Di-
niz (USC-ISI) for his visit to ICMC
in May /2011 and his contributions for
the definition of this research.

|1] D. Quinlan and C. Liao, “The ROSE Source-to-Source Compiler Infrastruc-
ture,” in Cetus Users and Compiler Infrastructure Workshop, in conjunc-
trion with PACT 2011, 2011, pp. 1-3.

|2] C. Liao, D. Quinlan, T. Panas, and B. de Supinski, “A ROSE-based OpenMP

3.0 research compiler supporting multiple runtime libraries,” Beyond Loop
Level Parallelism in OpenMP: Accelerators, Tasking and More, pp. 15—28,
2010.

|3] R. Menotti, J. M. P. Cardoso, M. Fernandes, and E. Marques, “LALP: A
Language to Program Custom FPGA-Based Acceleration Engines,” Inter-
national Journal of Parallel Programmaing, vol. 40, pp. 262—-289, 2012.

