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Abstract

This project aims to develop techniques for optimal code
generation for High Performance Computing using recon-
�gurable hardware. Some problems faced are related to
memory access, since the latency for data reading and
writing became a bottleneck for HPC applications. The
project is a branch of a system for hardware acceleration
in HPC applications currently being developed at Univer-
sity of Sao Paulo, Brazil. This system intends to facilitate
the development of HPC architectures for e�ciently ex-
ploit of parallelism.

Objectives

The project is based on LALP language, aiming to allow
that both execution �ow and memory access can be con-
trolled by the developer.
The main objectives are:

• Evaluation of compilation and optimization focused
on memory access, both on-chip and o�-chip;

• Development of techniques to assist the implemen-
tation of HPC applications through optimized data
management for recon�gurable hardware synthesis;

• Implementation of directives for memory mapping of
arrays that supports pipelining and non-pipelining ac-
cess operations;

• Improvement of LALP functionalities by adding mech-
anisms for large massive data handle.

The current work is focused on translating transformed C
source code into LALP code by using ROSE [1, 2] compiler.
No results are available yet nevertheless some benchmark
tests are expected to be performed soon.
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Language for Aggressive Loop Pipelining

LALP [3] (Language for Aggressive Loop Pipelining) is
a language focused on mapping loop structures while ex-
plores the parallelism of portions of code involving loops.
By using LALP is possible to achieve high control of a pro-
gram execution �ow through de�nition of the number of
clock cycles delayed/executed for speci�cs operations.

example ( out i n t x l_f ina l , out i n t xr_f ina l , out b i t
done , in b i t i n i t )

{
{ . . . }

counter ( i =0; i<16 ; i++@19) ;
i . clk_en = i n i t ;

p_addr = i ;
p_addr = 16 when i . done@1 ;
p_addr = 17 when i . done@3 ;
P_ENC. address = p_addr ;

. . .

d = x l & 0 x f f when i . step@5 ;
c = ( x l >> 8) & 0 x f f when i . step@5 ;
b = ( x l >> 16) & 0 x f f when i . step@5 ;
a = ( x l >> 24) & 0 x f f when i . step@5 ;

s_addr = i ;
s_addr = (0 + a ) when i . step@6 ;
s_addr = (256 + b) when i . step@7 ;
s_addr = (512 + c ) when i . step@8 ;
s_addr = (768 + d) when i . step@9 ;

. . .
}

Listing 1: Piece of LALP code.


