

HW Implementation of MRF MAP Inference on an FPGA Platform

Jungwook Choi and Rob A. Rutenbar FPL 2012 Aug. 30 2012

Overview

- Goal: Accurate & fast HW MRF MAP solver
 - Why MRF MAP inference and HW impl.?
 - Loopy belief propagation
 - Tree-reweighted message passing (TRW-S)
 - Our TRW-S hardware architecture
 - FPGA experimental results (x30 faster than SW)
 - Conclusion & future work

MRF MAP Inference

]

MRF MAP Inference

Why Custom Hardware Impl.?

- Many apps map to a *common* MRF framework
- Computation is *local*, well matched for custom HW

Loopy Belief Propagation

- In **BP**, a node propagates *belief* to neighbors by passing *messages*
 - Message: "based on what I know now, what do I tell to my neighbor?"
 - Belief: "what label should I choose based on my neighbors?"
 - Energy computed by the best labels based on beliefs
- BP on a tree
 - Optimum energy can be found after all inward/outward message passing is done
- BP on a loopy graph
 - No guarantee of optimality due to loops

Tree-Reweighted Message Passing

Energy is the weighted sum of tree energy

7/16

Sequential TRW (TRW-S)

- New goal: maximize *lower bound* by data cost update & message passing on trees
- Sequential message passing → convergence property
 - Lower bound is guaranteed not to decrease
 - \rightarrow More chance to find the optimum energy!!

Challenge : parallelize "sequential message passing"

Comparison: BP-M and TRW-S

- Benchmark: Flower stereo images* (360x262x16 label)
 - BP-M: min-sum belief propagation, run 80 iterations.
 - TRW-S: sequential tree reweighted message passing, run 80 iterations.

*From stereo movie sample, http://www.stereomaker.net/sample/index.html

ECE ILLINOIS

Streaming TRW-S HW Architecture

- Key: *diagonal ordering* of message passing for *parallelism*
- Decoupled, streaming arch.
- Launch/retire 1 pixel/clock
 - Complete label-set likelihood updates for all labels
- Deep pixel-proc pipeline
 - 14 stages deep
 - So: 14 pixels "in flight" / clock

Streaming TRW-S HW Architecture

– Pipelined message passing

Experimental Platform: FPGA

- Our platform: Convey HC-1
 - Host-FPGA cache-coherent virtual memory system
 - Max memory BW: 1Kbit/cycle(~20GB/sec)/FPGA (runs @150MHz)

]

Experimental Results

- Stereo matching of Middlebury benchmark*
 - Speed (per iteration)
 - FPGA impl. of streaming TRW-S (F-sTRW-S) runs in Convey HC-1 (@ 150MHz)
 - SW impl. [Szeliski 2008] runs in Intel Core i7 (@ 1.87GHz)

Task	Task Size	Cost Fn.	Our HW: F-sTRW-S		SW Impl.*
Tsukuba	384x288x16L	Truncated linear	478,134 cy	0.0032 sec	0.12 sec
Venus	434x383x20L	Truncated quadratic	1,436,257 cy	0.0096 sec	0.47 sec
Teddy	450x375x60L	Potts model	2,914,599 cy	0.0194 sec	0.67 sec

– F-sTRW-S is 34.5~49.0 times faster than SW impl.

*R. Szeliski, et al., "A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors," *IEEE Tr. PAMI*, 2008.. 12/16

Experimental Results

- Stereo matching of Middlebury benchmark (cont'd)
 - Comparison of 3D depth maps after 500 iterations

F-sTRW-S speeds-up SW impl without loss of quality of results

14/16

Experimental Results

• Rough comparison with other VLSI impl. [Liang 2011]

Algorithm	Tile-based BP*	F-sTRW-S		
Spec.	320x240x64L	384x288x16L (ma	ax: 512x512x64L)	
Num. of Iteration	$(B, T_{I}, T_{O}) = (16, 20, 5)$	T _O = 5	T ₀ = 40	
Minimum Energy	396,953	393,434	370,359	
Speed	7.28 frames/sec	38.32 frames/sec	7.25 frames/sec	

F-sTRW-S shows compelling speed and inference capability

*Liang, et al., "Hardware-Efficient Belief Propagation," IEEE Trans. Circ. Syst. Video Tech, May 2011.

Experimental Results

• Comparison of speed with other GPU impl.

Impl.	Real-time BP [*] [Yang 2006]	Tile-based BP** [Liang 2011]	Fast BP ^{***} [Xiang 2012]	F-sTRW-S
GPU	NVIDIA GeForce 7900 GTX	NVIDIA GeForce 8800 GTS	NVIDIA GeForce GTX 260	N/A
# Iteration	(4 coarse to fine scales) = (5,5,10,20)	(B, T _I , T _O) = (16, 20, 5)	(3 coarse to fine scale) = (9,6,2)	T ₀ = 5
Time (ms)	79.71	124.38	61.41	26.10

– F-sTRW-S outperforms other GPU impl. in speed.

* Q. Yang, et al., "Real-time global stereo matching using hierarchical belief propagation," *BMVC*, 2006. ** Liang, et al., "Hardware-Efficient Belief Propagation," *IEEE Trans. Circ. Syst. Video Tech*, May 2011. *** X. Xiang, et al., "Real-time stereo matching based on fast belief propagation," *MACH VISION APPL*, 2012

Conclusion & Future work

Conclusion

- The FIRST custom hardware implementation of Sequential tree-reweighted message passing (TRW-S) algorithm is introduced.
- Our streaming TRW-S implementation shows not only compelling speed but also superior quality of results compared to other belief propagation implementation on VLSI and GPU.
- Future work
 - Streaming video-rate TRW-S stereo matching engine
 - Expand Streaming TRW-S for more apps

Key References

- R. Szeliski, et al., "A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 6, pp. 1068-1680, Jun. 2008.
- J. Sun, et al., "Stereo Matching Using Belief Propagation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 7, pp. 787-800, Jul. 2003.
- V. Kolmogorov, "Convergent Tree-Reweighted Message Passing for Energy Minimization," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1568-1583, Oct. 2006.
- Convey computer, "Convey HC-1 Personality Development Kit Reference Manual, v 4.1," <u>http://www.conveycomputer.com</u>, Sep. 2009.
- C. -K. Liang, et al., "Hardware-Efficient Belief Propagation," IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 5, pp. 525-537, May 2011.
- Q. Yang, et al., "Real-time global stereo matching using hierarchical belief propagation," *The British Machine Vision Conference*, pp. 989-998, 2006.
- X. Xiang, et al., "Real-time stereo matching based on fast belief propagation," *Machine Vision and Applications*, pp. 1-9, 2012.

Thank You