
0

 A Scalable Complex Event Processing Framework
for Combination of SQL-based Continuous Queries

and C/C++ Functions

 Takashi Takenaka, Masamichi Takagi
Hiroaki Inoue

NEC Corporation

August 30, 2012

FPL2012

0

1

 Today’s Key Message

Synthesizing

SQL with C

to event processing

on FPGAs
1

2

 Outline

• Background

• Our work

• Evaluation

• Conclusion
2

Complex Event Processing(CEP)

Retrieve
important

information

Real-Time
Events

Decision
Making

Response

Control

Patterns from
Historical Data

Real-world

3

CEP

IDC: $10B (software) by 2014

CEP Applications
Financial Algorithmic Trading

Active diagnostics of facilities

Fraud detection: web commerce, credit card

Compliance reporting and monitoring

Track and Trace: Patients, packages

…

4

CEP in financial treading

5

(stock_id, price, volume)
CEP

Stock
exchanges

t

vo
lu

m
e 1.0

0.8

VWAP high

Capture a trend:
 volume is starting high then it reaches 80%, then
Calculate “volume-weighted average of price(V
WAP)” during the period.

Decision
Market information

Capture meaningful trend
and calculate financial benchmarks

Performance requirement

6

monitoring Manufacturing Financial

Latency

Events per second

1ms

1s

Web
analysis

Data
warehouse

1 h

1K 10K 1M

Relational Database

Limit of
SW

solution

(Torsten Grabs, “Introduction to Microsoft SQL Server 2008 R2 StreamInsight”)

Application domain
of CEP

7

Hardware CEP
Software CEP Hardware CEP [17,21]

Software CEP Hardware CEP

Performance Low
(0.12Gbps) [12]

High
(20Gbps)

Application
range Broad Limited

Events
Server

Events
FPGA

NIC

Server

8

Major HW CEP Requirements

• Programmability

• Scalability

9

Programmability

Oracle CQL

Sybase CCL

IBM SPL

StreamBase
StreamSQL

EsperTech EPL

... etc.

Software CEPs

SQL
+

User-defined
functions
(C/Java)

Scalability

10

CEP
R

esults

Event sources

10k
Listed issues

in NYSE

1k
sensor nodes

100
sensor nodes

multiple streams

Bridge
monitoring

Factory
monitoring

Financial
Trading

Existing HW CEPs

11

Woods [21] Inoue[17]

Language SQL-based C-based

Performance Good
(1Gbps)

Good
(20Gbps)

Programmability No user
functions

No SQL
interface

Scalability Limited
(< 1K) No

Summary of background

Programmability

Sc
al

ab
ili

ty

SQL-based
[21]

C-based
[17]

1k

1

10k

13

 Outline

• Background

• Our work

• Evaluation

• Conclusion
13

Our Goal

?
SQL-based

[21]

C-based
[17]

Programmability

Sc
al

ab
ili

ty

1k

1

10k

SQL with C

15

Two Technical Points

1. SQL interface on the top of
C-to-HDL compiler

2. Scalable architecture for
 multiple streams

15

Performance came from …

16

SQL to HDL
compiler

SQL-based
CEP language

C to HDL
compiler

C-based
CEP language

C-based: 20Gbps SQL-based: 1Gbps

Current “C-to-HDL compiler” technology
generates well-optimized circuits

Use industry tools No industry tool

<

17

Basic Strategy

C to HDL
compiler

C-based
CEP Language

C to HDL
compiler

C-based
CEP Language

C-based
[17]

This work

SQL to C
interface

SQL to HDL
compiler

SQL-based
CEP language

SQL-based
[21]

SQL’s primitives

18

SELECT *
WHERE volume > 3200
From Stock

SELECT stock_id, SUM(volume) AS sum
From Stock [ROWS 4 PRECEDING]

SELECT stock_id, calc_vwap() AS vwap
From Stock [ROWS 4 PRECEDING]

Selection

Window, Aggregation

User functions

Translation rule: selection

19

SELECT *
WHERE volume > 3200
From Stock

while(true) {
 entry = event_fifo_in.read();
 if (entry.volume > 3200) {
 event_fifo_out.write(entry);
 }
}

SQL

C

Finding events whose volume is greater than 3,200.

Translation rule: window

20

SELECT stock_id, SUM(volume) AS sum
From Stock [ROWS 4 PRECEDING]

#define WINDOW_SIZE 4
evin_t win[WINDOW_SIZE];
while(true) {
 for(i=1;i<WINDOW_SIZE;i++)
 win[i] = win[i-1];
 win[0] = event_fifo_in.read();
 result.sum = calc_sum_volume(win);
 event_fifo_out.write(result);
}

SQL

C

Calculating sum of volume of latest 4 events.

Translation rule: User-function

21

SELECT stock_id, calc_vwap() AS vwap
From Stock [ROWS 4 PRECEDING]

while(true) {
 ...
 result.vwap = calc_vwap(win);
 event_fifo_out.write(result);
}

SQL

C

Calculating “volume-weighted average of price” of latest
4 events.

After translated to C, …

22

C-to-HDL compilers generate
well-parallelized and pipelined circuits.

+

+

+

Result

Events

win[]

for(i=0;i<WINDOW_SIZE;i++)
 sum += win[i];
result = sum;

Summary of SQL-to-C interface

23

SQL-based
[21]

C-based
[17] Ours

Selection Yes No Yes
Window Yes No Yes

Matching Yes Yes Yes
Aggregation Limited Yes Yes

User
function No Yes Yes
Multiple
streams Limited No ?

24

Two Technical Points

1. SQL interface on the top of
a C-to-HDL compiler

2. Scalable architecture for
 multiple streams

24

Multiple streams

25

CEP Engine

CEP Engine

CEP Engine

Stream
for stock A

Stream
for stock B

Stream
for stock C

Naive replication is not applicable for
> 100 streams

CEP is required to receive multiple streams
and to perform event processing.

Observation

26

Multiple streams are usually interleaved
into a stream on a high-speed link
 an event arrives at a time

Stream
for stock A

Stream
for stock B

Stream
for stock C

MUX
C B A B A

A A

B B

C C

Interleaved multiple-context
architecture

27

C B A B A
Interleaved multiple streams

Events Stream
Partitioner

CEP Core
Logic

Matching contexts
Stream ID

Summary of our work

28

SQL-based
[21]

C-based
[17] Ours

Selection Yes No Yes
Window Yes No Yes

Matching Yes Yes Yes
Aggregation Limited Yes Yes

User
function No Yes Yes
Multiple
streams Limited No Yes

29

 Outline

• Background

• Our work

• Evaluation

• Conclusion
29

30

Evaluation platform
FPGA Xilinx XC5VLX330T-2
CAD NEC CyberWorkBench, Xilinx ISE 12.2

30

31

Setup

PCIe
DMA

CEP
logic

Network Server

NIC

156MHz x 128b=19.968Mbps

MAC
&

UDP

31

Query

t

vo
lu

m
e 1.0

0.8

VWAP high Captures a trend where volume is
starting high then it reaches 80%,
then calculates “volume-weighted
average of price(VWAP)” during
the period.

Query

32

SELECT stock_id, vwap
FROM Stock
MATCH_RECOGNIZE (
 PARTITION BY stock_id
 MEASURES C.stock_id AS stock_id
 C.vwap AS vwap
 PATTERN (A B+ C)
 DEFINE A AS vol_high()
 B AS pri_stbl()
 C AS vol_down()
)

SQL
bool vol_high(evin_t ev, evarg_t &arg) {
 arg.stock_id = ev.stock_id;
 arg.volume = ev.volume
 arg.sum_volume = ev.volume;
 arg.sum_w_price = ev.price * ev.volume;
 return ev.volume > 1000;
}

bool pri_stbl(evin_t ev, evarg_t &arg) {
 arg.sum_volume += ev.volume;
 arg.sum_w_price += ev.price * ev.volume
 arg.vwap=arg.sum_w_price/arg.sum_volume;
 return (ev.price > vwap);
}

bool vol_down(evin_t ev, evarg_t &arg) {
 return ev.volume < 0.8 * arg.volume;
}

User functions

Scalability

0

10

20

30

40

50

60

70

80

90

100
Proposed Naive replication

FP
G

A
U

sa
ge

of streams

500x improvement

FPGA Usage = max(block mem usage/block mem avail, slice usage/slice avail) * 100

34

 Outline

• Background

• Our work

• Evaluation

• Conclusion
34

Our work

Woods
[21]

Inoue
[17]

Programmability

Sc
al

ab
ili

ty

1k

1

10k

SQL with C

	 A Scalable Complex Event Processing Framework�for Combination of SQL-based Continuous Queries �and C/C++ Functions
	 Today’s Key Message
	 Outline
	Complex Event Processing(CEP)
	CEP Applications
	CEP in financial treading
	Performance requirement
	スライド番号 8
	スライド番号 9
	スライド番号 10
	Scalability
	Existing HW CEPs
	Summary of background
	 Outline
	Our Goal
	スライド番号 16
	Performance came from …
	スライド番号 18
	SQL’s primitives
	Translation rule: selection
	Translation rule: window
	Translation rule: User-function
	After translated to C, …
	Summary of SQL-to-C interface
	スライド番号 25
	Multiple streams
	Observation
	Interleaved multiple-context architecture
	Summary of our work
	 Outline
	スライド番号 31
	スライド番号 32
	Query
	Scalability
	 Outline
	スライド番号 36

