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Today’'s Key Message

Synthesizing
SQL with C
to event processing

on FPGAS
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Complex Event Processing(CEP)

Real-world Real-Time
Events

CEP Decision
\EUd]e

Retrieve

important Response
Information

Control

Patterns from
Historical Data

IDC: $10B (software) by 2014



CEP Applications

Financial Algorithmic Trading
Active diagnostics of facilities
Fraud detection: web commerce, credit card
Compliance reporting and monitoring

Track and Trace: Patients, packages



CEP In financial treadin

Capture meaningful trend
and calculate financial benchmarks

Market information
Stock (stock_id, price, volume)
exchanges ‘ -~ Decision

Capture a trend:
volume is starting high then it reaches 80%, then

Calculate “volume-weighted average of price(V
WAP)” during the period.



Performance reguirement
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Hardware CEP

Software CEP Hardware CEP [17,21]
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Major HW CEP Requirements

e Programmability

e Scalabllity



Programmability

Software CEPs

Sybase CCL

SQL
Oracle CQL n
IBM SPL User-defined
functions
EsperTech EPL (C/Java)
StreamBase
StreamSQL

.. etc.



Scalability

multiple streams
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Existing HW CEPs

Woods [2]1] Inoue[17]
Language SQL-based C-based
Performance Good Gooa
(1Gbps) (20Ghbps)
Programmability No U.Ser .NO SQL
functions interface
Scalability Himited NO

(< 1K)
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Scalability

Our Goal

Programmability

SQL with C



Two Technical Points

1. SQL interface on the top of
C-to-HDL compiler

2. Scalable architecture for
multiple streams
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Performance came from ...

Current “C-to-HDL compiler” technology
generates well-optimized circuits

SQL-based: 1Gbps <&  C-based: 20Gbps

SQL-based C-based
CEP language CEP language

SQL to HDL C to HDL
compiler compiler

No industry tool Use Industry tools
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Basic Strategy

SQL-based C-based This work
[21] [17]

SQL-based
CEP language
SQL to HDL
compiler




SOL'S primitives
Selection

SELECT *
WHERE wvolume > 3200
From Stock

Window, Aggregation

SELECT stock 1d, SUM(volume) AS sum
From Stock [ROWS 4 PRECEDING]

User functions

SELECT stock 1d, calc vwap() AS vwap
From Stock [ROWS 4 PRECEDING]
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Translation rule: selection

Finding events whose volume is greater than 3,200.

SQL |SELECT =*
WHERE volume > 3200

From Stock

C |while(true) {

entry = event _fifo iIn.read();

i1IT ( entry.volume > 3200 ) {
event fifo out.write(entry);

¥

}




Translation rule: window

Calculating sum of volume of latest 4 events.

SQL |SELECT stock_id, SUM(volume) AS sum
From Stock [ROWS 4 PRECEDING]

>

#define WINDOW_SIZE 4
evin_t win[WINDOW_SIZE];
while(true) {
for(i=1; i<WINDOW_SIZE;1++)
win[i] = win[i1-1];
win[O] = event_fifo_iIn.read();
result.sum = calc_sum volume(win);
event_fTifo out.write(result);




Translation rule: User-function

Calculating “volume-weighted average of price” of latest
4 events.

SQL |SELECT stock_id, calc_vwap() AS vwap
From Stock [ROWS 4 PRECEDING]

¥

while(true) {

result.vwap = calc vwap(win);
event_fTifo out.write(result);

}




After translated to C, ...

C-to-HDL compilers generate
well-parallelized and pipelined circuits.

Tor(1=0; I<WINDOW_SIZE; 1++)
sum += win[i];
result = sum;

Events




Summary of SQL-to-C interface

streams

SQL[-Zblzilsed C-Fle17sied ours

Selection Yes NO Yes

Window Yes NO Yes

Matching Yes Yes Yes

Aggregation | Limited Yes Yes

oo No Yes Yes
Multiple 1) imited NO ?
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Two Technical Points

1. SQL interface on the top of
a C-to-HDL compller

2. Scalable architecture for
multiple streams
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Multiple streams

CEP is required to receive multiple streams
and to perform event processing.

Stream |
for stock A CEP Engine
Stream _
for stock B CEP Engine

Stream CEP Engine
for stock C

Naive replication is not applicable for
> 100 streams
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Observation

Multiple streams are usually interleaved
Into a stream on a high-speed link
- an event arrives at a time

Stream
for stock A

Stream
for stock B

Stream
for stock C
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Interleaved multiple-context
architecture

Interleaved multiple streams
CEP Core
Logic

B
| Eventsa Stream
Partitioner
.’
4
Matching contexts

Stream ID
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Summary of our work

streams

SQL[-Zblzilsed C-Fle17sied ours

Selection Yes No Yes
Window Yes No Yes
Matching Yes Yes Yes
Aggregation |  Limited Yes Yes
function No Yes Yes
Multiple Limited No Yes
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Evaluation platform

FPGA

Xilinx XC5VLX330T-2

CAD

NEC CyberWorkBench, Xilinx ISE 12.2

{0



Network

Setup

#156MHz x 128b=19.968Mbps

- |Server

NIC

A~ highy  vwap Captures atrend where volume is

------------- then calculates “volume-weighted
average of price(VWAP)” during
the period.

t
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Query

SQL User functions
SELECT stock_id, vwap bool vol_high(evin_t ev, evarg_t &arg) {
FROM Stock arg.stock 1d = ev.stock id;
MATCH_RECOGNIZE ( arg.volume = ev.volume
PARTITION BY stock id arg.sum_volume = ev.volume;
MEASURES C.stock_id AS stock_id arg.sum_w_price = ev.price * ev.volume;
C.vwap AS vwap return ev.volume > 1000;
PATTERN (A B+ ©) s
DEFINE A AS vol_high() bool pri_stbl(evin_t ev, evarg_t &arg) {
B AS pri_stbl() arg.sum_volume += ev.volume;
C AS vol_down() arg.sum_w_price += ev.price * ev.volume
) arg.vwap=arg.sum_w_price/arg.sum_volume;
return (ev.price > vwap);
L

bool vol _down(evin_t ev, evarg t &arg) {
return ev.volume < 0.8 * arg.volume;

s




Scalability
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FPGA Usage
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FPGA Usage = max(block mem usage/block mem avail, slice usage/slice avail) * 100
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