FPL2012

A Scalable Complex Event Processing Framework
for Combination of SQL-based Continuous Queries
and C/C++ Functions

Takashi Takenaka, Masamichi Takagi
Hiroaki Inoue
NEC Corporation

August 30, 2012

Today’'s Key Message

Synthesizing
SQL with C
to event processing

on FPGAS

Outline

 Background
e Our work
e Evaluation

e Conclusion

Complex Event Processing(CEP)

Real-world Real-Time
Events

CEP Decision
\EUd]e

Retrieve

important Response
Information

Control

Patterns from
Historical Data

IDC: $10B (software) by 2014

CEP Applications

Financial Algorithmic Trading
Active diagnostics of facilities
Fraud detection: web commerce, credit card
Compliance reporting and monitoring

Track and Trace: Patients, packages

CEP In financial treadin

Capture meaningful trend
and calculate financial benchmarks

Market information
Stock (stock_id, price, volume)
exchanges ‘ -~ Decision

Capture a trend:
volume is starting high then it reaches 80%, then

Calculate “volume-weighted average of price(V
WAP)” during the period.

Performance reguirement

Latency

Application domain
of CEP

Data (Web
warehouse analysis
‘ monitoring T Financial

U | U |
L—*J
1K 10K 1M

Relational Database

1h

1s

1ms
Limit of

SW
solution

Events per second

(Torsten Grabs, “Introduction to Microsoft SQL Server 2008 R2 StreamlInsight”)

Hardware CEP

Software CEP Hardware CEP [17,21]

Server
FPGA Server

NIC B

Events I

Events

Software CEP Hardware CEP
Performance Low @ High @
(0.12Gbps) [12] (20Gbps)
Application L
range Broad © Limited ®

Major HW CEP Requirements

e Programmability

e Scalabllity

Programmability

Software CEPs

Sybase CCL

SQL
Oracle CQL n
IBM SPL User-defined
functions
EsperTech EPL (C/Java)
StreamBase
StreamSQL

.. etc.

Scalability

multiple streams

<
0 >
~ %
0 CEP |mp S
o —
< n
O
D
n
Bridge Factory Financial
monitoring monitoring Trading

100 1k 10k

Listed issues

sensor nodes sensor nodes

10

Existing HW CEPs

Woods [2]1] Inoue[17]
Language SQL-based C-based
Performance Good Gooa
(1Gbps) (20Ghbps)
Programmability No U.Ser .NO SQL
functions interface
Scalability Himited NO

(< 1K)

11

Summary of background
>
Z_c—%
c—g 10k
)
SQL-basec
1k [21]

Programmability

Outline

e Background
e Our work
e Evaluation

e Conclusion

13

Scalability

Our Goal

Programmability

SQL with C

Two Technical Points

1. SQL interface on the top of
C-to-HDL compiler

2. Scalable architecture for
multiple streams

15

Performance came from ...

Current “C-to-HDL compiler” technology
generates well-optimized circuits

SQL-based: 1Gbps <& C-based: 20Gbps

SQL-based C-based
CEP language CEP language

SQL to HDL C to HDL
compiler compiler

No industry tool Use Industry tools

16

Basic Strategy

SQL-based C-based This work
[21] [17]

SQL-based
CEP language
SQL to HDL
compiler

SOL'S primitives
Selection

SELECT *
WHERE wvolume > 3200
From Stock

Window, Aggregation

SELECT stock 1d, SUM(volume) AS sum
From Stock [ROWS 4 PRECEDING]

User functions

SELECT stock 1d, calc vwap() AS vwap
From Stock [ROWS 4 PRECEDING]

18

Translation rule: selection

Finding events whose volume is greater than 3,200.

SQL |SELECT =*
WHERE volume > 3200

From Stock

C |while(true) {

entry = event _fifo iIn.read();

i1IT (entry.volume > 3200) {
event fifo out.write(entry);

¥

}

Translation rule: window

Calculating sum of volume of latest 4 events.

SQL |SELECT stock_id, SUM(volume) AS sum
From Stock [ROWS 4 PRECEDING]

>

#define WINDOW_SIZE 4
evin_t win[WINDOW_SIZE];
while(true) {
for(i=1; i<WINDOW_SIZE;1++)
win[i] = win[i1-1];
win[O] = event_fifo_iIn.read();
result.sum = calc_sum volume(win);
event_fTifo out.write(result);

Translation rule: User-function

Calculating “volume-weighted average of price” of latest
4 events.

SQL |SELECT stock_id, calc_vwap() AS vwap
From Stock [ROWS 4 PRECEDING]

¥

while(true) {

result.vwap = calc vwap(win);
event_fTifo out.write(result);

}

After translated to C, ...

C-to-HDL compilers generate
well-parallelized and pipelined circuits.

Tor(1=0; I<WINDOW_SIZE; 1++)
sum += win[i];
result = sum;

Events

Summary of SQL-to-C interface

streams

SQL[-Zblzilsed C-Fle17sied ours

Selection Yes NO Yes

Window Yes NO Yes

Matching Yes Yes Yes

Aggregation | Limited Yes Yes

oo No Yes Yes
Multiple 1) imited NO ?

23

Two Technical Points

1. SQL interface on the top of
a C-to-HDL compller

2. Scalable architecture for
multiple streams

24

Multiple streams

CEP is required to receive multiple streams
and to perform event processing.

Stream |
for stock A CEP Engine
Stream _
for stock B CEP Engine

Stream CEP Engine
for stock C

Naive replication is not applicable for
> 100 streams

25

Observation

Multiple streams are usually interleaved
Into a stream on a high-speed link
- an event arrives at a time

Stream
for stock A

Stream
for stock B

Stream
for stock C

26

Interleaved multiple-context
architecture

Interleaved multiple streams
CEP Core
Logic

B
| Eventsa Stream
Partitioner
.’
4
Matching contexts

Stream ID

27

Summary of our work

streams

SQL[-Zblzilsed C-Fle17sied ours

Selection Yes No Yes
Window Yes No Yes
Matching Yes Yes Yes
Aggregation | Limited Yes Yes
function No Yes Yes
Multiple Limited No Yes

28

Outline

e Background
e Our work
e Evaluation

e Conclusion

29

Evaluation platform

FPGA

Xilinx XC5VLX330T-2

CAD

NEC CyberWorkBench, Xilinx ISE 12.2

{0

Network

Setup

#156MHz x 128b=19.968Mbps

- |Server

NIC

A~ highy vwap Captures atrend where volume is

------------- then calculates “volume-weighted
average of price(VWAP)” during
the period.

t

31

Query

SQL User functions
SELECT stock_id, vwap bool vol_high(evin_t ev, evarg_t &arg) {
FROM Stock arg.stock 1d = ev.stock id;
MATCH_RECOGNIZE (arg.volume = ev.volume
PARTITION BY stock id arg.sum_volume = ev.volume;
MEASURES C.stock_id AS stock_id arg.sum_w_price = ev.price * ev.volume;
C.vwap AS vwap return ev.volume > 1000;
PATTERN (A B+ ©) s
DEFINE A AS vol_high() bool pri_stbl(evin_t ev, evarg_t &arg) {
B AS pri_stbl() arg.sum_volume += ev.volume;
C AS vol_down() arg.sum_w_price += ev.price * ev.volume
) arg.vwap=arg.sum_w_price/arg.sum_volume;
return (ev.price > vwap);
L

bool vol _down(evin_t ev, evarg t &arg) {
return ev.volume < 0.8 * arg.volume;

s

Scalability

=4==Proposed = =Naive replication
100

O
o

500x iImprovement

80
70
60
50
40

30

FPGA Usage

20

10

0 []
X R 0 o X D ® A ® ©
V S S SR i

v
S SRS

®

of streams

FPGA Usage = max(block mem usage/block mem avail, slice usage/slice avail) * 100

Outline

e Background
e Our work
e Evaluation

e Conclusion

34

10k

Scalability
=
~

®

Programmability

SQL with'C

	 A Scalable Complex Event Processing Framework�for Combination of SQL-based Continuous Queries �and C/C++ Functions
	 Today’s Key Message
	 Outline
	Complex Event Processing(CEP)
	CEP Applications
	CEP in financial treading
	Performance requirement
	スライド番号 8
	スライド番号 9
	スライド番号 10
	Scalability
	Existing HW CEPs
	Summary of background
	 Outline
	Our Goal
	スライド番号 16
	Performance came from …
	スライド番号 18
	SQL’s primitives
	Translation rule: selection
	Translation rule: window
	Translation rule: User-function
	After translated to C, …
	Summary of SQL-to-C interface
	スライド番号 25
	Multiple streams
	Observation
	Interleaved multiple-context architecture
	Summary of our work
	 Outline
	スライド番号 31
	スライド番号 32
	Query
	Scalability
	 Outline
	スライド番号 36

