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LDPC Codes

LDPC codes: Forward Error Correction (FEC) codes that
exhibit excellent error correction performance.

Adopted by many present and future standards.

Hardware-friendly due to inherent parallelism of decoding
algorithms.

FPGAs can support multiple standards and rates via runtime
reconfiguration.
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Channel Model

Memoryless AWGN channel:

yi = xi + ni , ni ∼ N (0, σ2).

Decoding consists of finding most likely xi , based on y, for all
i = 1, . . . , n:

x̂i = arg max
xi

p(xi |y) ←−NP-hard!
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LDPC Codes

Defined through a parity-check
matrix H.

Represented by a Tanner graph −→

Decoding via Min-Sum message
passing on the graph.
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Min-Sum Decoding Algorithm

Variable-to-check: Lij =

Initial LLR︷ ︸︸ ︷
2yi/σ

2 +
∑

k∈C(i)/j

Rki .

Check-to-variable: Rij =

 ∏
k∈V(i)/j

sign(Lki )

 min
k∈V(i)/j

|Lki | .

A maximum of k iterations is performed.
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LDPC Decoder Architectures

Fully Parallel: Every VN and CN represented in hardware.

Very high throughput.
High hardware utilization, very complex routing.

Serial: One VN and one CN.

Low throughput.
Very efficient hardware utilization, minimal routing.

Partially Parallel: Compromise between the two.
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Message Quantization

(n,m) signed fixed point quantization:

Total of n bits for each message.
m bits are used for fractional part.

(n1,m1)–(n2,m2) hybrid quantization:

(n1,m1) quantization for initial LLR messages.
(n2,m2) quantization for variable-to-check and
check-to-variable messages.

By choosing n2 < n1, routing and processing unit complexity
can be significantly reduced.
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Effect of Message Quantization on Performance

Comparison of (4,1) with hybrid:

(4, 1)–(3, 1): negligible loss, -25% wires, -45% LUTs.
(3, 1)–(2, 1): 0.75 dB loss, -50% wires, -71% LUTs.
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Variable and Check Node Processing Units

Straightforward combinational logic implementing the
variable and check node update rules.

Variable node. Check node.
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Pipelining

Usually, one decoding iteration is considered to last one clock
cycle → high path delays.

Idea: add registers to reduce path delays.

Problem: decoding now takes twice as many cycles.

Observation: at each cycle, either VNs or CNs are idle.

Solution: decode two codewords simultaneously.
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Early Termination

If after some iteration we have reached a valid codeword,
decoding can halt.

At high Eb/N0, this can lead to significant increase in
average throughput.

Significant I/O problems due to non-uniform distribution of
required iterations.
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Early Termination

Eb/N0 = 2 dB. Eb/N0 = 3.5 dB.

Idea: force decoder to perform at least k/2 iterations.
Small impact on throughput.
k guaranteed cycles for I/O.
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Overall Datapath
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Results

This work Chandrasetty gain/
(4,1)–(3,1) & Aziz (2011) loss

Decoding Algorithm Min-Sum MMS

Clock Frequency 154.30 MHz 149.00 MHz 3.5%
Eb/N0 at 10−6 BER 3.5 dB 4 dB 0.50 dB
Av. Iter. at 10−6 BER 5.8 6.8 14.7%
Av. Throughput 14.6 Gbps 12.6 Gbps 15.9%
LUT Utilization 89.4% 98.5% 9.1%
Max. Delay 220 ns 121 ns 81.8%
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Results

This work Chandrasetty gain/
(3,1)–(2,1) & Aziz (2011) loss

Decoding Algorithm Min-Sum MMS

Clock Frequency 211.40 MHz 149.00 MHz 41.9%
Eb/N0 at 10−6 BER 4.25 dB 4 dB 0.25 dB
Av. Iter. at 10−6 BER 5.6 6.8 17.6%
Av. Throughput 21.6 Gbps 12.6 Gbps 71.4%
LUT Utilization 47.6% 98.5% 50.9%
Max. Delay 161 ns 121 ns 33.1%
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Conclusion

We presented an FPGA-based LDPC decoder architecture which:

1 Outperforms the state of the art by:

15.9% at a 0.50 dB lower Eb/N0.
71.4% at a 0.25 dB higher Eb/N0.

2 Requires 9.1% and 50.9% less logic, respectively.

3 Fully addresses the I/O problems due to early termination.
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Thank you!

Questions?

A. Balatsoukas-Stimming and A. Dollas FPL’12: FPGA-Based Multi-Gbps LDPC Decoder 18 / 18


	Introduction
	Preliminaries
	Channel Model
	LDPC Codes
	Decoding Algorithm

	Decoder Architecture
	Message Quantization
	Variable and Check Node Processing Units
	Pipelining
	Early Termination

	Results & Conclusion

