Tolerating Multiple Faults With Proximate Manifestations in FPGA-Based Critical Designs For Harsh Environments

Jaime Espinosa, David de Andrés, Juan-Carlos Ruiz and Pedro Gil {jaiesgar, ddandres, jcruizg, pgil}@disca.upv.es

> Oslo, NORWAY August 2012

FPL2012 22nd International Conference on Field Programmable Logic and Applications

Institute for the Applications of Advanced ICTs

The scenario

 Traditional FPGA products for harsh environments are dependable ... and costly.

 New SRAM-based devices are low-cost, powerful and flexible... but inherently not so dependable.

SRAM FPGAs dependability impairments

Not one is solution to multiple

Existing (transient/permanent) faults with proximate manifestations

p	Technique	Handled cases		
Detection an masking	Triple Modular Redundancy	Single transients & permanents in fabric Multiple transients in fabric		
	Time Redundancy	Single transients in fabric		
	Dual Redundancy + Time redundancy	Single transients & permanents in fabric		

	Technique	Handled cases		
Recovery	Scrubbing	Transients in CMEM		
	Direct Rewriting (Partial Dyn. Reconf.)	Transients in CMEM		
	Relocating	Multiple permanents in fabric & CMEM		

5

Our approach to tolerate MF: TMR-MDR (Triple Modular Redundancy - Module Discard and Repair)

6

Detailed architecture (I)

Detailed architecture (II)

7

Detailed architecture (III)

Detailed architecture (IV)

Detailed architecture (V)

10

FSM Design: outputs

	No action
very on	Rewriting
Recov Acti	Relocation
	Multiple Rewriting/relocation

	No stall
ontr Flow	Single stall
Ŭ	Multiple stall

FSM Design: case examples

FSM Design: state diagram

14

Case study

- Target design: 32-bit floating point multiplier
 - Extensive use of combinational logic
 - Extensive use of internal routing
- Implementations [target: Virtex-6 (XC6VLX240T-1FFG1156)]:
 - Base (32-bit FP multiplier)
 - TMR enhanced with triple majority voter (eTMR)
 - TMR with Module Discard and Repair (TMR-MDR)

Compared features of implementation:

- Resource utilisation (silicon area)
- Performance (maximum clock frequency)

Compared measures:

- Percentage of failures
- Percentage of experiments leading to stall

Testing campaign

- VHDL-based Fault Injection Tool (VFIT).
- Workload: large set of randomly generated input operands.
- **Faultload**: 6 different configurations related to considered fault models (multiple faults represented with 2 consecutive faults)

Table 1. Considered single fault models				
Duration	Manifestation on fabric			
Transient	Pulse, indetermination, and delay			
Permanent	Stuck-at, stuck-open, indetermination,			
	delay, short, open, and bridging			
Transiont	Transient stuck-at, bit-flip,			
11411510111	indetermination, delay, short, and open			
Permanent	Permanent stuck-at, indetermination,			
	delay, short, and open			
	1. ConsiDurationTransientPermanentTransientPermanent			

Table 2. Considered multiple fault models

1st fault	2nd fault
Duration Target	Duration Target
Transient Comb. (fabric)	Transient Comb. (fabric)
Transient Comb. (fabric)	Transient CMEM ¹
Transient Comb. (fabric)	Permanent Comb. (fabric) or CMEM
Transient CMEM ¹	Transient Comb. (fabric)
Permanent Comb. (fabric) or CMEM	Transient Comb. (fabric)
Transient CMEM ¹	Transient CMEM ¹
Permanent Comb. (fabric) or CMEM	Permanent Comb. (fabric) or CMEM

¹ Transient faults in CMEM manifest as permanent ones in design logic (fabric) and can be assimilated to them from the logic point of view.

 Total number of experiments (250800) related to number of elements in each circuit.

Results: failures percentage

	Enh	ИR	TMR-MDR approach			
Faultload ¹	Number of	Number of failures		Number of failures		
	experiments	Number	of failules	experiments Number of failures		
Т	18237	0	(0.00%)	23563	0	(0.00%)
Р	18237	0	(0.00%)	² 0.61 PP	0	(0.00%)
T + T	18237	83	(0.46%)	17.85 PP	2	(0.01%)
T + P	18237	113	(0.62%)	16.83 PP	2	(0.01%)
P + T	18237	3271	(17.94%)	23363	22	(0.09%)
P + P	18237	3085	(16.92%)	23563	22	(0.09%)
Total	109422	6552	(5.99%)	141378	48	(0.03%)

Results: temporal intrusion

Faultload	1 Number of	Experiments leading		Experiments leading	
	experiments	to single stalls		to multiple stalls 🕈	
T	23563	0	(0.00%)	2402	(10.19%)
Р	23563	0	(0.00%)	3002	(12.74%)
T + T	23563	2084	(8.84%)	4849	(20.58%)
$\overline{T + P}$	23563	115	(0.49%)	7387	(31.35%)
P + T	23563	4214	(17.88%)	10416	(44.20%)
P + P	23563	12	(0.05%)	14623	(62.06%)
Total	141378	6425	(4.54%)	42679	(30.19%)

A 32% of those experiments affected the muxes block, which accounts for just 5% of the occupied area

Results: Area and CK Period overhead

System	Area	Overhead	Clock period (Overhead
Original	231 CBs		25.613 ns	
Enhanced TMR	820 CBs	254%	30.864 ns	21%
TMR-MDR approach	846 CBS	266%	36.164 ns	41%

Conclusions

- It is **possible** to use **SRAM-based** FPGAs in harsh environments
 - The use of TMR-MDR improves coverage of multiple proximate faults in time over existing techniques.
 - The distinction between transient and permanent faults allows for reduced downtime periods, thanks to the use of partial dynamic reconfiguration for fault tolerance and recovery.
 - The cost is comparable to existing techniques
- Current research: More accurate detection and diagnosis of faults

 increased availability & improved management of resources

Thank you for your attention! Any Questions?

Tolerating Multiple Faults With Proximate Manifestations in FPGA-Based Critical Designs For Harsh Environments

Jaime Espinosa, David de Andrés, Juan-Carlos Ruiz and Pedro Gil {jaiesgar, ddandres, jcruizg, pgil}@disca.upv.es

> Oslo, NORWAY September 2011

FPL2012 22nd International Conference on Field Programmable Logic and Applications

Institute for the Applications of Advanced ICTs