
Jason Oberg, Ken Eguro, Ray Bittner, and Alessandro Forin

 Vision
 Keypoint recognition

 Object segmentation

 Human pose estimation

 Organ detection

 Speech recognition
 Web search
 Data mining

 Computationally intensive

 All processing done on Xbox or PC

 Requires “real” processor or GPU for 30 FPS

 What about mobile/embedded applications?

 Atom and ARMs can’t keep up

3

Platform FPS

Atom 230 Stress < 2

Cortex-A15 Stress 3

//upload.wikimedia.org/wikipedia/commons/6/67/Xbox-360-Kinect-Standalone.png

 Direct HW implementation needed

 Power

 Performance

 Cost

 FPGAs are a good platform

 Flexibility is important

 New vision algorithms

 Full system integration

4

 Depth pixel enters at root
 Evaluate function at node
 Look at another pixel

 Subtract, compare with
threshold

 Go to left or right child
 Leaves contain

classification probabilities
 Repeat for all pixels, all

trees

5

90% chance this pixel is part of left
hand, 10% chance it is part of torso

 Each node decision requires data-dependent
access to database

 Tree size is 25 MB, must use external DDR

 Processing is highly parallel, but
computation/communication very small

 Speed of external memory access is
bottleneck

 What can we do to minimize & optimize DDR
access?

6

 DDR is organized into “pages”

 Back-to-back accesses to same page  2 cycles

 Back-to-back accesses to different pages 
10 cycles

 All pixel processing is fully parallel

 We can change the processing order without
affecting the results

7

 Process each pixel from top to bottom of tree

 Repeat for every pixel and tree

 We are guaranteed to cross DDR pages!

8

0

1 2

3 4 5 6
P1

0

1 2

3 4 5 6

0

1 2

3 4 5 6
P1 P1

P2 P2 P3

Process Pixel 1 Process Pixel 2 Process Pixel 3

P3 P2 P3

 Batch-process pixels through tree level
before continuing to the next

 Tends to reduce repeated node accesses

 Tends to increase same-page accesses

9

0

1 2

3 4 5 6

0

1 2

3 4 5 6

0

1 2

3 4 5 6
P1 P2 P3

Process Level 1 Process Level 2 Process Level 3

P1 P2 P3

P1 P2 P3

 Process all pixels through tree level before
continuing, but sort pixels by child node

 Guarantees any node is only requested once

 Guarantees any page is only “opened” once

10

0

1 2

3 4 5 6

0

1 2

3 4 5 6

0

1 2

3 4 5 6
P1 P2 P3

Process Level 1 Process Level 2 Process Level 3

P1 P2 P3

Swap order

Swap order

P1 P2 P3

 Test image 160x120 pixels

 Three 20-level trees

 1.1M tree node accesses

11

Processing

Algorithm
Cached Hits

Page

Hits

Page

Misses

Norm.

BW

% Max

BW @

30FPS

Depth First 124,314 394,086 633,600 1.000 1.070

Breadth First 892,202 173,111 86,687 0.170 0.180

Sorted Breadth First 1,119,005 30,714 2,281 0.012 0.013

 Depth-first

 No temporary storage

 Breadth-first

 Requires pointers

 Sorted breadth-first

 Requires pointers

 Requires computation
for sorting

12

0

1 2

3 4 5 6

Breadth-first processing

P1 P2

P3

0

1 2

3 4 5 6

Sorted breadth-first process level 2

P1 P2 P3

Swap order

 Continuously sorted FIFO
 Sort on insertion
 Right children are pushed to ‘Right’
 Left children are inserted at ‘Left’

▪ Contents re-written to ‘Right’

 ‘Left’ reset to ‘Right’ once new # is popped by ‘Head’

13

1. Host PC captures depth frame from Kinect via USB
2. Host PC sends frame to FPGA via Ethernet
3. FPGA computes classification, sends back results
4. Host post-processes and displays

IN

OUT

(HOST)

IN

OUT

Ethernet

(FPGA)

Forest-Fire
Algorithm (PCI-e)

14

USB

Results

 Xilinx V6 LX240T
 Updated results since publication

15

 LUTs FF BRAM

Full System
13,284

(8.8%)

16,144

(5.4%)

35

(8.4%)

 Forest Fire Core
6,425

(4.3%)

7,552

(2.5%)

9

(2.1%)

 DDR3 Controller
5,058

(3.4%)

7,496

(2.5%)

0

(0%)

 Eth  PC Interface
1798

(1.2%)

1,092

(0.4%)

26

(6.3%)

 Extra time can be used for building more of
the application in hardware

 any pre/post-processing done in software

 higher-resolution camera

16

Algorithm Avg. Cycles @ 75Mhz FPS

BF Avg. 414,557 (1.0) 181

BFS Avg. 349,492 (1.18x faster) 214

BF Stress 1,714,525 (1.0) 44

BFS Stress 1,349,706 (1.27x faster) 56

 Random decision tree processing is used in
many different applications

 Different platforms have different
capabilities  different algorithmic
considerations

 Low computation per communication doesn’t
mean it’s bad for FPGAs & FPGA acceleration

17

