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 Vision 
 Keypoint recognition   

 Object segmentation   

 Human pose estimation 

 Organ detection 

 Speech recognition 
 Web search 
 Data mining 



 Computationally intensive 

 All processing done on Xbox or PC 

 Requires “real” processor or GPU for 30 FPS 

 What about mobile/embedded applications? 

 Atom and ARMs can’t keep up 
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Platform FPS 

Atom 230 Stress < 2 

Cortex-A15 Stress 3 
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 Direct HW implementation needed 

 Power 

 Performance 

 Cost 

 FPGAs are a good platform 

 Flexibility is important 

 New vision algorithms 

 Full system integration 
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 Depth pixel enters at root 
 Evaluate function at node 
 Look at another pixel 

 Subtract, compare with 
threshold 

 Go to left or right child 
 Leaves contain 

classification probabilities 
 Repeat for all pixels, all 

trees 
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90% chance this pixel is part of left 
hand, 10% chance it is part of torso 



 Each node decision requires data-dependent 
access to database 

 Tree size is 25 MB, must use external DDR 

 Processing is highly parallel, but 
computation/communication very small 

 Speed of external memory access is 
bottleneck 

 What can we do to minimize & optimize DDR 
access? 
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 DDR is organized into “pages” 

 Back-to-back accesses to same page  2 cycles 

 Back-to-back accesses to different pages   
10 cycles 

 

 All pixel processing is fully parallel 

 We can change the processing order without 
affecting the results 
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 Process each pixel from top to bottom of tree 

 Repeat for every pixel and tree 

 We are guaranteed to cross DDR pages! 
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 Batch-process pixels through tree level 
before continuing to the next 

 Tends to reduce repeated node accesses 

 Tends to increase same-page accesses 
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 Process all pixels through tree level before 
continuing, but sort pixels by child node 

 Guarantees any node is only requested once 

 Guarantees any page is only “opened” once 
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 Test image 160x120 pixels 

 Three 20-level trees 

 1.1M tree node accesses 
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Processing 

Algorithm 
Cached Hits 

Page  

Hits 

Page  

Misses 

Norm. 

BW 

% Max 

BW @ 

30FPS 

Depth First 124,314 394,086 633,600 1.000 1.070 

Breadth First 892,202 173,111 86,687 0.170 0.180 

Sorted Breadth First 1,119,005 30,714 2,281 0.012 0.013 



 Depth-first 

 No temporary storage 

 Breadth-first 

 Requires pointers 

 Sorted breadth-first 

 Requires pointers 

 Requires computation 
for sorting 
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 Continuously sorted FIFO 
 Sort on insertion 
 Right children are pushed to ‘Right’ 
 Left children are inserted at ‘Left’ 

▪ Contents re-written to ‘Right’ 

 ‘Left’ reset to ‘Right’ once new # is popped by ‘Head’ 
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1. Host PC captures depth frame from Kinect via USB 
2. Host PC sends frame to FPGA via Ethernet 
3. FPGA computes classification, sends back results 
4. Host post-processes and displays 
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 Xilinx V6 LX240T 
 Updated results since publication 
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  LUTs FF BRAM 

Full System 
13,284 

(8.8%) 

16,144 

(5.4%) 

35 

(8.4%) 

   Forest Fire Core 
6,425 

(4.3%) 

7,552 

(2.5%) 
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(2.1%) 

   DDR3 Controller 
5,058 

(3.4%) 

7,496 

(2.5%) 

0 

(0%) 

   Eth  PC Interface 
1798 

(1.2%) 

1,092 

(0.4%) 

26 

(6.3%) 



 Extra time can be used for building more of 
the application in hardware 

 any pre/post-processing done in software 

 higher-resolution camera 
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Algorithm Avg. Cycles @ 75Mhz FPS 

BF Avg. 414,557 (1.0) 181 

BFS Avg. 349,492 (1.18x faster) 214 

BF Stress 1,714,525 (1.0) 44 

BFS Stress 1,349,706 (1.27x faster) 56 



 Random decision tree processing is used in 
many different applications 

 Different platforms have different  
capabilities  different algorithmic 
considerations 

 Low computation per communication doesn’t 
mean it’s bad for FPGAs  & FPGA acceleration 
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