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ABSTRACT

We present a dynamic framework for 2D complex filter implementation

ENERGY-PERFORMANCE-ACCURACY SPACE FOR SEPARABLE 2

We present a dynamic framework for 2D complex filter implementation
that is based on a multi-objective optimization scheme that generates
Pareto-optimal realizations from the Energy-Performance-AccuracyPareto-optimal realizations from the Energy-Performance-Accuracy
(EPA) space.
The EPA space is created by evaluating the 2D complex filterThe EPA space is created by evaluating the 2D complex filter
realizations in terms of their required energy, accuracy, and

performance. Dynamic EPA management, carried out via Dynamicperformance. Dynamic EPA management, carried out via Dynamic
Partial Reconfiguration (DPR) and Dynamic Frequency Control, then
consists on selecting Pareto-optimal realizations that meet timeconsists on selecting Pareto-optimal realizations that meet time
varying EPA requirements.
We demonstrate dynamic EPA management by applying a complexWe demonstrate dynamic EPA management by applying a complex
filter to a standard video sequence.
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via Dynamic Partial Reconfiguration.
1D complex FIR Filter IP

The 1D complex FIR filter IP processes complex input data and has

1D FIR core
E sclr v

The 1D complex FIR filter IP processes complex input data and has
complex coefficients (VHDL IP core available at www.ivpcl.org)

Embedded System: The figure below shows an embedded system
(implemented in the ML605 Board) that allows for Dynamic Partial(implemented in the ML605 Board) that allows for Dynamic Partial
Reconfiguration and Dynamic Frequency Control. This embedded
system implements the 2D separable complex FIR filter. The 1D complexsystem implements the 2D separable complex FIR filter. The 1D complex
FIR filter IP is a PLB peripheral.

Dynamic Frequency Control: The Dynamic Reconfiguration Port (DRP)Dynamic Frequency Control: The Dynamic Reconfiguration Port (DRP)
the Multi-Mode Clock Manager (MMCM) inside the Virtex-6 FPGA can
adjust the frequency at run-time via the parameter O0. The complexadjust the frequency at run-time via the parameter O0. The complex
filter is clocked at the adjustable frequency clkfx while the rest
clocked at PLB_clk (100 MHz).clocked at PLB_clk (100 MHz).
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ACCURACY SPACE FOR SEPARABLE 2-D COMPLEX FILTERS

OPTIMIZATION FRAMEWORK FOR 2D COMPLEX 

FILTERS:  implementation
generates

Accuracy

FILTERS:  The optimization framework consists of 3 steps:

1) Generate the Energy-Performance-Accuracy space of 2D 
Accuracy

filter

1) Generate the Energy-Performance-Accuracy space of 2D 
complex filter realizations, by varing hardware parameters and 
frequency of operation.
2) Multi-objective Pareto Optimization of the EPA space: The EPA filter

and

Dynamic

2) Multi-objective Pareto Optimization of the EPA space: The EPA 
space is represented by a set of hardware realizations along 

with their EPA values. We find the optimal realizations in the Dynamic
then
time-

with their EPA values. We find the optimal realizations in the 
Pareto (multi-objective) sense.
3) Dynamic management based on real-time EPA constraints: time-

complex

3) Dynamic management based on real-time EPA constraints: 
Once the Pareto front has been extracted, we can cast 
optimization problems based on PPA constraints.  Example:complex optimization problems based on PPA constraints.  Example:
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A complex image is processed through a Gabor separable filter
(complex coeffiicients). The table shows: parameter and

system
Partial (complex coeffiicients). The table shows: parameter and

frequency combinations for the generation of the EPA space. N
(# of coefficients), NH (coefficient bit-width), L (LUT size), OB

Partial
embedded

complex (# of coefficients), NH (coefficient bit-width), L (LUT size), OB
(output bit-width). Ideal filter: 31x31 double precision
coefficients. Test image: analytical lena (8-bit, CIF resolution)

complex

of coefficients. Test image: analytical lena (8-bit, CIF resolution)of
can
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RESULTS

Multiobjective optimization of the EPA space: The Pareto front Multiobjective optimization of the EPA space: The Pareto front 
lied entirely at the 100 MHz frequency. Thus, we carried out 
optimization for the EPA space at 100 MHz. BUFG

c
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optimization for the EPA space at 100 MHz. 
There are 20 Pareto-optimal points, that requires 20 MB of 
memory (40 bitstreams).
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Dynamic EPA Management: Time-varying constraints applied to 

a video sequence.  The circled points meet the constraints.
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