Dynamic Query

Masamichi

email: {

Switching for Complex Event

Takagi, Takashi Takenaka and Hiroaki NEC Corporation, Kawasaki, Japan

m-takagi@ab, takenaka@aj, h-inoue@ce

Processing on FPGAs

Inoue

}.jp.nec.com

Target system

Applications: Real-time data processing

Financial trading

NW traffic analysis

Health care

Employed: Complex Event Processing

- Complex event processing (CEP) is a new computing paradigm to deal with it
- CEP handles series of data on-the-fly

Throughput requirement has surpassed capability of software

Throughput requirement of exchange (based on OPRA prediction)

Target System: FPGA-based Complex Event Processing

Functions to develop

Requirements for FPGA-based CEP

i. Reduce loss by Increasing reliability, availability and serviceability

Example: Remove buggy trading query to prevent loss

ii. Increase profit through changing functions at runtime

Example: Switch to most appropriate trading queries

Function to develop: Online query switch Replacing functions at run-time

Motivating example – Switching trading algorithms

Issues of conventional technique

Writing new query by partial reconfiguration

- 1. Server shutdown is required, OR
- 2. Inconsistent outputs during switch

Requirements 2: Consistent outputs

- 1. No gap
- 2. Old results and new results are not disordered

Approach

- 1. Running old and new query simultaneously
- 2. Select new query results in a timely manner

(3) Run new and old query in parallel (4) Select and output new results

Architecture of Dynamic Reconfigurable CEP

Function of Query manager

(a) Manage logic area usage and prepare unused area

new query in parallel

Used: Query B-old
Used: Query B-new
Query Manager

(b) Configure new query and startup module

(d) Stop and reclaim logic

Function of OVN

(1) Attach query ID and version—Query—Value, ID, ver.

number to query result

Old query has the same ID as, smaller

(2) Drop results with smaller versions by comparing version numbers of two results which meet in the merge tournament

version number than new query

(3) Drop remaining results with smaller versions by consulting record of largest version ever passed

Test system for Dynamic Reconfigurable CEP

Evaluation of online query switch

Query switch is validated

Throughput of Output Versioning Network

Summary

- 1. Online query switch on FPGA-based CEP system is developed
 - Server shutdown is not allowed
 - Outputs during query switch should be consistent
- 2. Query Manager and Output Versioning Network is proposed to solve the consistency issue
 - Run old query and new query in parallel
 - Select results to output from old and new query results in a timely manner
- 3. Online query switch is validated on FPGA board
- 4. OVN achieves target clock frequency