
Introduction
K-nearest Neighbour (K-NN) classifier is a supervised machine learning
method used to assign a class label to a query of un-known class. When
datasets are large and highly dimensional, General PurposeProcessors
(GPPs) execute the K-NN classifier slowly. Microarray, a high throughput
biotechnology applies K-NN to predict the class label of un-known gene
expression sample e.g. identify if the sample is of cancerous or non-
cancerous tissue, diagnose or predict disease prognosis etc. GPP limitations
in terms of execution time and power consumption calls for applying high
performance computing (HPC) methods. As such, a high performance
adaptive FPGA-based implementation of K-NN classification using
Dynamic Partial Reconfiguration (DPR) is proposed in this paper.

Background on K-NN Classification 
Given XNM= {X N1, XN2, XN3, XN4,....XNM}is a training set of M
dimensions, and N patterns, each pattern X has a known class label L, there
are C possible classes e.g., C=2 identifies cancerous vs. non-cancerous
tissues, or diseased vs. Non-diseased tissue. Y is a query ofM dimensions.
Manhattan distance is used to compute the distance between Yand all
patterns in X to determine the closest number of neighbourhood (K)
patterns (KNNs) to the query and assign the query to the most frequently
encounteredL. TheManhattanDistanceis:

FPGA vs. GPP implementations Results
� FPGA implementation achieved~ 60x speed-up over (GPP).
� FPGA board used is ML403 having Xilinx XC4VFX12. The single K-

NN core achieved 150 MHz clock speed and occupied 25% CLB slices
based on (B-16, M=8, N=1024, K=13).

� The GPP used is a 2.6 GHz Intel Dual Core E5300 running 3GB RAM.
� Effect of increasing M was studied as shownbelow:
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encounteredL. TheManhattanDistanceis:

Microarray classification problems are highly dimensional imposing high
computational demands, thus are candidate for FPGA acceleration.

Summary & Conclusion
� An FPGA implementation of the K-NN classification offers significantly
higher performance in terms of execution time over equivalent GPP
implementation (between 60x-92x speed-up ).
� The DPR Multi-core Ensemble implementation offers the flexibility to
alter the parameters of any core without interrupting the operation of others at
~5x speed-up in reconfiguration time over full-chip reconfiguration.
�The Ensemble K-NN classifier allows combining the results of multiple K-
NN cores each based on different K to improve the classification accuracy as
K is known to affect the classification accuracy

A configuration library based on cores configured with different K’s  was 
created whereby the result of the three configurations are combined to 
obtain the best classification. 
The DPR Implementation was ~5x quicker in reconfiguration time than 
full FPGA reconfiguration.  
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Systolic Array Architecture
The hardware implementation was captured in Verilog HDL, fully
parameterized and pipelined. Parameters are: number of neighbourhoods
(K), number of dimensions (M), number of training vectors (N), each
dimensions has a wordlength of B, number of class labels (C).The design
is based on two types of systolic arrays to perform the distance
computation and finding the KNNs, lastly the class-label isdetermined.
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