Detecting Power Attacks on Reconfigurable Hardware

Adrien Le Masle Wayne Luk

Department of Computing
Imperial College London, UK

22nd International Conference on Field Programmable Logic and Applications
Main Contributions

- General framework to detect insertion of power measurement circuit in device’s power rail
 - ring oscillator-based power monitor circuit monitors supply voltage variations
 - attack detector circuit implements power attack detection strategy
 - abnormal supply voltages and power rail resistance values detected

- Implementation of framework
 - 3300 LUTs on Spartan-6 LX45 FPGA
 - insertion of 1Ω shunt resistor and high supply voltage detected on AES and RSA crypto-system @ 20 MHz
 - no false-positive and false-negative for proper operating margins
Outline

1 Introduction
 - Background
 - Problem
 - Main Contributions

2 Power Attack Detection Framework
 - Framework
 - Power Monitor
 - Attack Detector

3 Results
 - Experimental Setting
 - Detection Rate

4 Conclusion
 - Future Work
 - Summary
Outline

1 Introduction
 - Background
 - Problem
 - Main Contributions

2 Power Attack Detection Framework
 - Framework
 - Power Monitor
 - Attack Detector

3 Results
 - Experimental Setting
 - Detection Rate

4 Conclusion
 - Future Work
 - Summary
Security of encryption algorithm implementation

- Encryption algorithm
 - brute-force attack or exhaustive key search computationally infeasible
 - resists cryptanalysis

- Physical implementation of algorithm
 - leaks information
 - creates security flaws

- Side-channel attacks exploit these physical flaws
Power attacks

- Transistor switching inside device
 - leaks information about computation
 - power easily measured inserting shunt resistor in main power rail

- Simple Power Analysis (SPA)
 - direct information about encryption key through single power trace
 - eg: multiplication/squaring in RSA modular exponentiation

- Differential Power Analysis (DPA) [1]
 - information from multiple power traces with statistical methods
 - eg: DPA against AES or DES

- Successfully demonstrated on private and public key encryptions

FPGA power measurement

\[P = V_{\text{INT}} I = \left(V_{\text{CCINT}} - \left(V_{\text{EXT}} + V_{\text{NET}} \right) \right) I \approx V_{\text{CCINT}} I \]

\[I = \frac{V_{\text{EXT}}}{R_{\text{EXT}}} \]

- Variations of \(R_{\text{EXT}} \) create variations of supply voltage \(V_{\text{INT}} \)
Problem

- **Two types of countermeasures**
 - **masking**: randomize intermediate values processed by device [2]
 - application-dependent
 - 2-3 times area overhead
 - **hiding**: remove data dependency of power consumption [3,4]
 - eg: differential logic, symmetrical routing
 - 3-10 times area overhead
 - slow

- **Challenge**
 - preventing power attacks area-consuming and slows down design
 - many countermeasures often need to be combined
 - can’t we simply detect power attacks?

[2] F. Regazzoni et al., *FPGA implementations of the AES masked against power analysis attacks*, COSADE 2011
[3] K. Tiri et al., *A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation*, DATE ‘04
Main Contributions

- General framework to detect insertion of power measurement circuit in device’s power rail
 - ring oscillator-based power monitor circuit monitors supply voltage variations
 - attack detector circuit implements power attack detection strategy
 - abnormal supply voltages and power rail resistance values detected

- Implementation of framework
 - 3300 LUTs on Spartan-6 LX45 FPGA
 - insertion of 1Ω shunt resistor and high supply voltage detected on AES and RSA crypto-system @ 20 MHz
 - no false-positive and false-negative for proper operating margins
Outline

1. Introduction
 - Background
 - Problem
 - Main Contributions

2. Power Attack Detection Framework
 - Framework
 - Power Monitor
 - Attack Detector

3. Results
 - Experimental Setting
 - Detection Rate

4. Conclusion
 - Future Work
 - Summary
Hardware cores
- Cryptographic functions (RSA, AES, RNG, ...)
- Non-critical tasks (communication, clock generation, ...)

Power monitor
- Measures FPGA supply voltage variations on-chip

Attack detector
- Receives information about state of core’s power consumption
- Checks whether power consumption stays in pre-defined range

A. Le Masle and W. Luk (Department of Computing, Imperial College London, UK)

Detecting Power Attacks on Reconfigurable Hardware

FPL 2012
Oscillation frequency of ring oscillator affected by supply voltage

\[f_R \approx k_0 V_{\text{INT}} + f_0 \]

High resolution needs accumulation of many oscillations

- measurement period \(\uparrow \), response time \(\downarrow \)
- solution: evenly distribute network of ROs across chip and accumulate oscillations count \(\rightarrow \) placement and routing constraints
- better resolution, more consistent measurement
Advantages of ring oscillators

- built with primitives available to all commercial FPGAs
- relatively small and easily uniformly distributed across the chip
- ring oscillator’s frequency scales with advances in fabrication technology

Higher sampling rate than current FPGAs ADCs

- Virtex-6 ADC: 200 kHz
- ring oscillator-based power monitor: < 8 MHz
All possible input values cannot be tested

- for each core i, $p_{\text{ref}}, p_{\text{min},i}$ and $\Delta p_{\text{ref},i}$ are approximations

Margins m_{ref} and $m_{\text{ref},i}$ on p_{ref} and $\Delta p_{\text{ref},i}$

\[
p^*_{\text{ref}} = p_{\text{ref}}(1 + m_{\text{ref}})
\]

\[
\Delta p^*_{\text{ref},i} = (p^*_{\text{ref}} - p_{\text{min},i})(1 + m_{\text{ref},i})
\]
Monitoring (1/2)

- \(p(t) \) instantaneous power monitor reading

\[
\Delta p(t) = p_{\text{ref}}^* - p(t) \\
p_{\text{min}}(t) = p_{\text{ref}}^* - \sum_{i \in S(t)} \Delta p_{\text{ref},i}^*
\]

- At time \(t \), subset \(S(t) \) of \(n \) hardware cores are running

- Attack flag raised if

\[
p(t) > p_{\text{ref}}^* \quad \text{or} \quad \Delta p(t) > \sum_{i \in S(t)} \Delta p_{\text{ref},i}^*
\]
Normal operating conditions
- power trace $p(t)$ between p_{ref}^* and $p_{\text{min}}(t)$

Supply voltage too high
- p raises over p_{ref}^* → detected by equation 1

Supply voltage too low or power rail resistance too high
- p falls below p_{min} at time t_d → detected by equation 2
Outline

1 Introduction
 • Background
 • Problem
 • Main Contributions

2 Power Attack Detection Framework
 • Framework
 • Power Monitor
 • Attack Detector

3 Results
 • Experimental Setting
 • Detection Rate

4 Conclusion
 • Future Work
 • Summary
Experimental Setting

- Modified Pico E-101 board with Spartan-6 LX45 FPGA
- Switching regulators replaced by low dropout regulators
- 1.2V rail: output capacitors removed, 1Ω shunt resistor inserted
- Voltage drop across resistor measured with Tektronix MSO 2024 200 MHz oscilloscope through SMA connector
Case Study

- Crypto-system with 5 main cores @ 20 MHz
 - detection logic, 512-bit RSA, 128-bit AES, Microblaze and UART

- Three tests cases
 - RSA encryption
 - AES encryption
 - RSA and AES encryptions in parallel

- Three operating conditions
 - original board
 - modified board with higher supply voltage $V_{\text{INT}} = 1.25\,V$
 - modified board with shunt resistor $R_{\text{EXT}} = 1\,\Omega$
Parameters

- Power monitor
 - 144 ring oscillators @ 350 MHz
 - power monitor reading updated @ 8 MHz

- RSA/AES cores calibrated with 100/1000 random input pairs on original board

- Power consumption of Microblaze and UART neglected
 - UART never runs in parallel with RSA or AES
 - Microblaze only waits for interrupt

- Power monitor and attack detector area consumption
 - 3300 LUTs
 - 12% of area available on Spartan-6 LX45
Detected attacks (% of total runs - of which % of high voltage detections)

<table>
<thead>
<tr>
<th></th>
<th>p_{ref}</th>
<th>$p_{\text{ref}} + 1%$</th>
<th>$p_{\text{ref}} + 5%$</th>
<th>$\Delta p_{\text{ref},i}$</th>
<th>$\Delta p_{\text{ref},i} + 10%$</th>
<th>$\Delta p_{\text{ref},i} + 50%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>Original</td>
<td>3.8 - 100</td>
<td>0 - NA</td>
<td>0 - NA</td>
<td>98.6 - 0</td>
<td>0 - NA</td>
</tr>
<tr>
<td></td>
<td>$V_{\text{INT}} = 1.25\text{V}$</td>
<td>100 - 100</td>
<td>100 - 100</td>
<td>0 - NA</td>
<td>100 - 100</td>
<td>100 - 100</td>
</tr>
<tr>
<td></td>
<td>$R_{\text{EXT}} = 1\Omega$</td>
<td>0.001 - 100</td>
<td>0.001 - 100</td>
<td>0 - NA</td>
<td>100 - 0</td>
<td>100 - 0.004</td>
</tr>
<tr>
<td>AES</td>
<td>Original</td>
<td>0.11 - 100</td>
<td>0 - NA</td>
<td>0 - NA</td>
<td>1.6 - 0</td>
<td>0 - NA</td>
</tr>
<tr>
<td></td>
<td>$V_{\text{INT}} = 1.25\text{V}$</td>
<td>100 - 100</td>
<td>100 - 100</td>
<td>0.13 - 100</td>
<td>100 - 100</td>
<td>100 - 100</td>
</tr>
<tr>
<td></td>
<td>$R_{\text{EXT}} = 1\Omega$</td>
<td>0.001 - 100</td>
<td>0.001 - 100</td>
<td>0 - NA</td>
<td>100 - 0.004</td>
<td>100 - 0.004</td>
</tr>
<tr>
<td>RSA+AES</td>
<td>Original</td>
<td>1.8 - 100</td>
<td>0 - NA</td>
<td>0 - NA</td>
<td>2.7 - 0</td>
<td>0 - NA</td>
</tr>
<tr>
<td></td>
<td>$V_{\text{INT}} = 1.25\text{V}$</td>
<td>100 - 100</td>
<td>100 - 100</td>
<td>0.02 - 100</td>
<td>100 - 100</td>
<td>100 - 100</td>
</tr>
<tr>
<td></td>
<td>$R_{\text{EXT}} = 1\Omega$</td>
<td>0.001 - 100</td>
<td>0.001 - 100</td>
<td>0 - NA</td>
<td>100 - 0.02</td>
<td>100 - 0.02</td>
</tr>
</tbody>
</table>

- **High voltage detection (equation 1)**
 - no margin m_{ref} on p_{ref} → false-positives up to 3.8%
 - margin $m_{\text{ref}} = 1\%$ → no false-positives/false-negatives
 - margin greater than 5% → false-negatives up to 99%

- **Shunt resistor detection (equation 2) for $m_{\text{ref}} = 1\%$**
 - no margin $m_{\text{ref},i}$ on $\Delta p_{\text{ref},i}$ → false-positives up to 98.6%
 - margin $m_{\text{ref},i} = 10\%$ → no false-positives/false-negatives
 - margin $m_{\text{ref},i}$ greater than 50% → false-negatives appear (0.3%)
Outline

1. Introduction
 - Background
 - Problem
 - Main Contributions

2. Power Attack Detection Framework
 - Framework
 - Power Monitor
 - Attack Detector

3. Results
 - Experimental Setting
 - Detection Rate

4. Conclusion
 - Future Work
 - Summary
Future Work

- Evaluate attack detector for lower shunt resistor values
- Confirm temperature variations have only a negligible effect on attack detection
- Take into account power consumption of individual instructions of processor cores
- Investigate other on-chip measurement methods
- Explore attack detection of electromagnetic attacks
General framework to detect insertion of power measurement circuit in device’s power rail

- Ring oscillator-based power monitor circuit monitors supply voltage variations
- Attack detector circuit implements power attack detection strategy
- Abnormal supply voltages and power rail resistance values detected

Implementation of framework on Spartan-6 LX45 FPGA

- 3300 LUTs, 12% of total area available
- Insertion of 1Ω shunt resistor and high supply voltage detected on AES and RSA crypto-system @ 20 MHz
- No false-positive and false-negative for proper operating margins