Detecting Power Attacks on Reconfigurable Hardware

Adrien Le Masle Wayne Luk

Department of Computing Imperial College London, UK

22nd International Conference on Field Programmable Logic and Applications

FPL 2012 1 / 24

Main Contributions

- General framework to detect insertion of power measurement circuit in device's power rail
 - ring oscillator-based power monitor circuit monitors supply voltage variations
 - attack detector circuit implements power attack detection strategy
 - abnormal supply voltages and power rail resistance values detected
- Implementation of framework
 - 3300 LUTs on Spartan-6 LX45 FPGA
 - insertion of 1Ω shunt resistor and high supply voltage detected on AES and RSA crypto-system @ 20 MHz
 - no false-positive and false-negative for proper operating margins

FPL 2012 2 / 24

Outline

Introduction

- Background
- Problem
- Main Contributions

Power Attack Detection Framework

- Framework
- Power Monitor
- Attack Detector
- 3 Results
 - Experimental Setting
 - Detection Rate
- 4 Conclusion
 - Future Work
 - Summary

Outline

Introduction

- Background
- Problem
- Main Contributions

Power Attack Detection Framework

- Framework
- Power Monitor
- Attack Detector
- 3 Results
 - Experimental Sector
 - Detection Rate
- 4 Conclusion
 - Future Work
 - Summary

< ∃ >

Security of encryption algorithm implementation

Encryption algorithm

- brute-force attack or exhaustive key search computationally infeasible
- resists cryptanalysis
- Physical implementation of algorithm
 - leaks information
 - creates security flaws
- Side-channel attacks exploit these physical flaws

FPL 2012 5 / 24

- Transistor switching inside device
 - leaks information about computation
 - power easily measured inserting shunt resistor in main power rail
- Simple Power Analysis (SPA)
 - direct information about encryption key through single power trace
 - eg: multiplication/squaring in RSA modular exponentiation
- Differential Power Analysis (DPA) [1]
 - information from multiple power traces with statistical methods
 - eg: DPA against AES or DES
- Successfully demonstrated on private and public key encryptions

[1] P. Kocher et al., Differential power analysis, CRYPTO '99

-∢ ∃ ▶

Introduction

Background

FPGA power measurement

$$P = V_{INT}I = (V_{CCINT} - (V_{EXT} + V_{NET}))I \approx V_{CCINT}I$$
$$I = V_{EXT}/R_{EXT}$$

Variations of R_{EXT} create variations of supply voltage V_{INT}

< 3

Problem

Problem

- Two types of countermeasures
 - masking: randomize intermediate values processed by device [2]
 - application-dependent
 - 2-3 times area overhead
 - hiding: remove data dependency of power consumption [3,4]
 - eq: differential logic, symmetrical routing
 - 3-10 times area overhead
 - slow
- Challenge
 - preventing power attacks area-consuming and slows down design
 - many countermeasures often need to be combined
 - can't we simply detect power attacks?

[3] K. Tiri et al., A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. DATE '04

[4] P. Yu et al., Secure FPGA circuits using controlled placement and routing, CODES+ISSS '07-

8/24 FPL 2012

^[2] F. Regazzoni et al., FPGA implementations of the AES masked against power analysis attacks, COSADE 2011

Main Contributions

- General framework to detect insertion of power measurement circuit in device's power rail
 - ring oscillator-based power monitor circuit monitors supply voltage variations
 - attack detector circuit implements power attack detection strategy
 - abnormal supply voltages and power rail resistance values detected
- Implementation of framework
 - 3300 LUTs on Spartan-6 LX45 FPGA
 - insertion of 1Ω shunt resistor and high supply voltage detected on AES and RSA crypto-system @ 20 MHz
 - no false-positive and false-negative for proper operating margins

FPL 2012 9 / 24

Outline

Introduction

- Background
- Problem
- Main Contributions

Power Attack Detection Framework

- Framework
- Power Monitor
- Attack Detector

3 Results

- Experimental Setting
- Detection Rate
- 4 Conclusion
 - Future Work
 - Summary

< ∃ >

Framework

- Hardware cores
 - cryptographic functions (RSA, AES, RNG, ...)
 - non-critical tasks (communication, clock generation, ...)
- Power monitor measures FPGA supply voltage variations on-chip
- Attack detector
 - receives information about state of core's power consumption
 - checks whether power consumption stays in pre-defined range

FPL 2012 11 / 24

Power Monitor (1/2)

Oscillation frequency of ring oscillator affected by supply voltage

$$f_R \approx k_0 V_{INT} + f_0$$

- High resolution needs accumulation of many oscillations
 - measurement period \nearrow , response time \searrow
 - solution: evenly distribute network of ROs across chip and accumulate oscillations count → placement and routing constraints
 - better resolution, more consistent measurement

FPL 2012 12 / 24

Power Monitor (2/2)

- Advantages of ring oscillators
 - built with primitives available to all commercial FPGAs
 - relatively small and easily uniformly distributed across the chip
 - ring oscillator's frequency scales with advances in fabrication technology
- Higher sampling rate than current FPGAs ADCs
 - Virtex-6 ADC: 200 kHz
 - ring oscillator-based power monitor: < 8 MHz

FPL 2012 13 / 24

Calibration

- All possible input values cannot be tested
 - for each core *i*, p_{ref} , $p_{min,i}$ and $\Delta p_{ref,i}$ are approximations
- Margins m_{ref} and $m_{ref,i}$ on p_{ref} and $\Delta p_{ref,i}$

$$p_{ref}^* = p_{ref}(1 + m_{ref})$$

 $\Delta p_{ref,i}^* = (p_{ref}^* - p_{min,i})(1 + m_{ref,i})$

Monitoring (1/2)

• *p*(*t*) instantaneous power monitor reading

$$\Delta p(t) = p^*_{ref} - p(t)$$
 $p_{min}(t) = p^*_{ref} - \sum_{i \in S(t)} \Delta p^*_{ref,i}$

- At time t, subset S(t) of n hardware cores are running
- Attack flag raised if

$$p(t) > p_{ref}^*$$
 or (1)
 $\Delta p(t) > \sum_{i \in S(t)} \Delta p_{ref,i}^*$ (2)

Monitoring (2/2)

- Normal operating conditions
 - power trace p(t) between p_{ref}^* and $p_{min}(t)$
- Supply voltage too high
 - p raises over $p^*_{ref}
 ightarrow$ detected by equation 1
- Supply voltage too low or power rail resistance too high
 - p falls below p_{min} at time $t_d \rightarrow$ detected by equation 2

FPL 2012 16 / 24

Results

Outline

Introduction

- Background
- Problem
- Main Contributions

2 Power Attack Detection Framework

- Framework
- Power Monitor
- Attack Detector

3 Re

- Results
- Experimental Setti
- Detection Rate

4 Conclusion

- Future Work
- Summary

Results

Experimental Setting

- Modified Pico E-101 board with Spartan-6 LX45 FPGA
- Switching regulators replaced by low dropout regulators
- 1.2V rail: output capacitors removed, 1Ω shunt resistor inserted
- Voltage drop across resistor measured with Tektronix MSO 2024 200 MHz oscilloscope through SMA connector

A. Le Masle and W. Luk

FPL 2012 18 / 24

Case Study

- Crypto-system with 5 main cores @ 20 MHz
 - detection logic, 512-bit RSA, 128-bit AES, Microblaze and UART
- Three tests cases
 - RSA encryption
 - AES encryption
 - RSA and AES encryptions in parallel
- Three operating conditions
 - original board
 - modified board with higher supply voltage $V_{INT} = 1.25 V$
 - modified board with shunt resistor $R_{EXT} = 1 \Omega$

• • • • • • • • • • • •

- Power monitor
 - 144 ring oscillators @ 350 MHz
 - power monitor reading updated @ 8 MHz
- RSA/AES cores calibrated with 100/1000 random input pairs on original board
- Power consumption of Microblaze and UART neglected
 - UART never runs in parallel with RSA or AES
 - Microblaze only waits for interrupt
- Power monitor and attack detector area consumption
 - 3300 LUTs
 - 12% of area available on Spartan-6 LX45

Detection Rate

Detected attacks (% of total runs - of which % of high voltage detections)							
		p _{ref}	p _{ref} + 1%	<i>p_{ref}</i> + 5%	$\Delta p_{ref,i}$	$\Delta p_{ref,i} + 10\%$	$\Delta p_{ref,i} + 50\%$
RSA	Original	3.8 - 100	0 - NA	0 - NA	98.6 - 0	0 - NA	0 - NA
	$V_{INT} = 1.25V$	100 - 100	100 - 100	0 - NA	100 - 100	100 - 100	100 - 100
	$R_{EXT} = 1\Omega$	0.001 - 100	0.001 - 100	0 - NA	100 - 0	100 - 0.004	100 - 0.006
AES	Original	0.11 - 100	0 - NA	0 - NA	1.6 - 0	0 - NA	0 - NA
	$V_{INT} = 1.25V$	100 - 100	100 - 100	0.13 - 100	100 - 100	100 - 100	100 - 100
	$R_{EXT} = 1\Omega$	0.001 - 100	0.001 - 100	0 - NA	100 - 0.004	100 - 0.004	99.7 - 0.004
RSA+AES	Original	1.8 - 100	0 - NA	0 - NA	2.7 - 0	0 - NA	0 - NA
	$V_{INT} = 1.25V$	100 - 100	100 - 100	0.02 - 100	100 - 100	100 - 100	100 - 100
	$R_{EXT} = 1\Omega$	0.001 - 100	0.001 - 100	0 - NA	100 - 0.02	100 - 0.02	100 - 0.003

High voltage detection (equation 1)

- no margin m_{ref} on $p_{ref} \rightarrow$ false-positives up to 3.8%
- margin $m_{ref} = 1\% \rightarrow$ no false-positives/false-negatives
- margin greater than $5\% \rightarrow$ false-negatives up to 99%
- Shunt resistor detection (equation 2) for $m_{ref} = 1\%$
 - no margin $m_{ref,i}$ on $\Delta p_{ref,i} \rightarrow$ false-positives up to 98.6%
 - margin $m_{ref,i} = 10\% \rightarrow$ no false-positives/false-negatives
 - margin $m_{ref,i}$ greater than 50% \rightarrow false-negatives appear (0.3%)

Conclusion

Outline

Introduction

- Background
- Problem
- Main Contributions

Power Attack Detection Framework

- Framework
- Power Monitor
- Attack Detector
- 3 Results
 - Experimental Setting
 - Detection Rate

Conclusion

- Future Work
- Summary

- Evaluate attack detector for lower shunt resistor values
- Confirm temperature variations have only a negligible effect on attack detection
- Take into account power consumption of individual instructions of processor cores
- Investigate other on-chip measurement methods
- Explore attack detection of electromagnetic attacks

Summary

- General framework to detect insertion of power measurement circuit in device's power rail
 - ring oscillator-based power monitor circuit monitors supply voltage variations
 - attack detector circuit implements power attack detection strategy
 - abnormal supply voltages and power rail resistance values detected
- Implementation of framework on Spartan-6 LX45 FPGA
 - 3300 LUTs, 12% of total area available
 - insertion of 1Ω shunt resistor and high supply voltage detected on AES and RSA crypto-system @ 20 MHz
 - no false-positive and false-negative for proper operating margins

FPL 2012 24 / 24

• • • • • • • • • • • •