Research

FPGAs for Trusted Cloud Computing

Ken Eguro Embedded and Reconfigurable Computing

Ramarathnam Venkatesan Cryptography, Security and Applied Mathematics

FPL 2012 – Oslo, Norway August 29th

Cloud Computing

Cloud Security Issues

- Existing cloud systems cannot offer strong security guarantees
 - Cloud administrator access

 Iiability
 - Availability & co-tenancy

 malware & sidechannel attacks

Cloud administrators have full access!

Cloud Security Issues

- Existing cloud systems cannot offer strong security guarantees
 - Cloud administrator access

 Iiability
 - Availability & co-tenancy

 malware & sidechannel attacks

Cloud is open to everyone!

Service-Level Agreements

- Network bandwidth/ latency
- CPU time
- Storage allotment/ latency
- Minimum uptime
- Security

Observation: Security Imbalance

- 1% to 10% of information/transactions deal with sensitive data
- Isolate only sensitive computations on trusted compute nodes

Trusted Compute Node

- Independent administration
 - Management != full access
 - Cloud operator is not part of "root of trust"
- Physically secure
- High performance
- Generality
- Flexibility

Trusted Compute Node

- Independent administration
- Physically secure
 - Store keys
 - Decrypt & authenticate binaries and data
 - Execute application exactly as prescribed
- High performance
- Generality
- Flexibility

Trusted Compute Node

- Independent administration
- Physically secure
- High performance
- Generality
- Flexibility

- Requirements
 - Independent administration
 - Physically secure X
 - High performance
 - Generality
 - Flexibility

- Platform Options
 - Commodity servers
 - Local/cloud hybrids
 - High security commodity servers
 - Secure co-processors
 - Homomorphic crypto
 - Dedicated hardware
 - HSMs
 - FPGAs

Х

- Requirements
 - Independent administration
 - Physically secure
 - High performance X
 - Generality
 X
 - Flexibility

- Platform Options
 - Commodity servers
 - Local/cloud hybrids
 - High security commodity servers
 - Secure co-processors
 - Homomorphic crypto
 - Dedicated hardware
 - HSMs
 - FPGAs

- Requirements
 - Independent administration
 - Physically secure
 - High performance X
 - Generality
 - Flexibility

- Platform Options
 - Commodity servers
 - Local/cloud hybrids
 - High security commodity servers
 - Secure co-processors
 - Homomorphic crypto
 - Dedicated hardware
 - HSMs
 - FPGAs

X

- Requirements
 - Independent administration
 - Physically secure
 - High performance
 - Generality
 - Flexibility

- Platform Options
 - Commodity servers
 - Local/cloud hybrids
 - High security commodity servers
 - Secure co-processors
 - Homomorphic crypto
 - Dedicated hardware
 - HSMs
 - FPGAs

- Requirements
 - Independent administration
 - Physically secure
 - High performance
 - Generality
 - Flexibility

- Platform Options
 - Commodity servers
 - Local/cloud hybrids
 - High security commodity servers
 - Secure co-processors
 - Homomorphic crypto
 - Dedicated hardware
 - -HSMs
 - FPGAs

Infrastructure Setup

Infrastructure Setup

Infrastructure Setup

Loading Application Binaries

Loading Application Binaries

Dynamic Deployment

Advanced Issues – TA Interaction

Medical record tokenization

Sensitive vs. non-sensitive data

Medical record tokenization

- Sensitive vs. non-sensitive data
- Separate, tokenize & encrypt sensitive fields

Medical record tokenization

Prototype cloud server & FPGA architecture

Resource Requirements

On an ML605 (V6 LX 240T)

	LUTs	FF	BRAM	DSP
<u>Full system</u>	<u>18.1%</u>	<u>9%</u>	<u>6.9%</u>	<u>0.5%</u>
Infrastructure (RSA, SHA, PCIe, DDR3)	14.8%	8.6%	5.2%	0.5%
Tokenization (AES, AES + SHA)	3.3%	0.3%	0.7%	0.0%

Performance

On an ML605 (V6 LX 240T)

- 200MHz clock
- Initiate 13+ RSA secure session key exchanges per second
- Decrypt AES at 572MB/s
- Tokenize with SHA-256 at 12MB/s
- Gb Ethernet is 125MB/s
- 1-10% of the incoming data was sensitive

Conclusions

- Security is paramount to the cloud
- Existing server are insufficient
- FPGAs provide native support for secure boot and secure operation
- This represents a brand new market for FPGAs