Using DSP Block Pre-adders in Pipeline SDF FFT Implementation in Contemporary FPGAs

Carl Ingemarsson, Petter Källström and Oscar Gustafsson
Using DSP Block Pre-adders in Pipeline SDF FFT Implementation in Contemporary FPGAs

1. Introduction

2. Optimizations

3. Implementation Results

4. Applicability to Other FPGAs

5. Conclusion
DFTs are widely used in, e.g., OFDM communications.
Straight forward implementation of FFT is common.
This implementation is not efficient in FPGAs.
We have mainly focused on the 6 and 7 series Xilinx FPGAs.
Radix-2 SDF FFT Structure

Entire structure of a 64 point radix-2 SDF FFT processor.
One stage

Original structure of one stage of the FFT architecture.
First Optimization

Key transformation relation: \(X = \frac{X + X}{2} \).
Utilizing the existing pre-adder in the DSP-blocks.
If the pre-adder has a bypass function, this allows a third transformation, affecting the content in the shift register.
Optimization Summary

Resource usage with respect to word length W.

<table>
<thead>
<tr>
<th></th>
<th># LUTs</th>
<th># DSP48s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>$W \times 6$</td>
<td>4</td>
</tr>
<tr>
<td>Optimization 1</td>
<td>$W \times 4$</td>
<td>4</td>
</tr>
<tr>
<td>Optimization 2</td>
<td>$W \times 3$</td>
<td>4</td>
</tr>
<tr>
<td>Optimization 3</td>
<td>$W \times 2$</td>
<td>4</td>
</tr>
</tbody>
</table>

One extra bit in each adder, used for sign extension, is required, using one LUT each (4, 4, 2, 2 in the designs, respectively).
Implementation Results

Implementation results for 16 bit word length in a Xilinx Virtex 6 (xc6vsx315t).

<table>
<thead>
<tr>
<th></th>
<th># slices</th>
<th># LUTs</th>
<th># DSP48E1s</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>44</td>
<td>116</td>
<td>4</td>
<td>(16 \cdot 6 + 4 = 100)</td>
</tr>
<tr>
<td>Opt. 1</td>
<td>20</td>
<td>68</td>
<td>4</td>
<td>(16 \cdot 4 + 4 = 68)</td>
</tr>
<tr>
<td>Opt. 2</td>
<td>21</td>
<td>50</td>
<td>4</td>
<td>(16 \cdot 3 + 2 = 50)</td>
</tr>
<tr>
<td>Opt. 3(^1)</td>
<td>10</td>
<td>34</td>
<td>4</td>
<td>(16 \cdot 2 + 2 = 34)</td>
</tr>
</tbody>
</table>

\(^1\) Manual placement required.

Expected number of LUTs includes sign extension in additions.
Applicability to Other FPGAs

- Optimization 1 can be applied to most FPGAs.
- Optimization 2 utilizes the pre-adder of contemporary FPGAs.
- Optimization 3 needs a pre-adder with bypass functionality.
Conclusion

- We have proposed transformations of a radix-2 SDF stage.
- These transformations reduce the LUT usage and utilize pre-adders of the DSP blocks.
- This is applicable to Xilinx’ 6 and 7 series FPGAs, but should be usable also in other FPGA families.
Thank you.

Any questions?