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* Background
— FPGA architecture
— FPGA routing



FPGA Architecture (1/3)
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FPGA Architecture (2/3)
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FPGA Architecture (3/3)
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Routing Resource Graph (RRG)
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www.eecg.toronto.edu/~aling/ecel1718/project/fang/route rr graph.png




FPGA Routing

Disjoint-path problem (on the RRG); NP-complete

Input:

— Graph G(V, E)

— Set of sources S=1{s,, s,, ..., S}

— Set of sets of sinks T={T,, T,, ..., T.}, T. = {t1, t2, ..., t*}
Solution

— Finds paths from each source s, to all sinks in T,

— Paths emanating from different sinks must be disjoint

(cannot shared any vertices or edges)

Objective(s)
— Minimize delay, wirelength, etc.



Disjoint and Non-disjoint Paths




Disjoint and Non-disjoint Paths

Two nets are routed on the same FPGA segment

(remember, RRG vertices represent wires and CLB 1/0s)
S, t,?

\ /

This route is illegal



Disjoint and Non-disjoint Paths

This route is legal



LUT Input Equivalence (1/3)
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LUT Input Equivalence (2/3)
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Overly restrictive disjoint-path problem formulation
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LUT Input Equivalence (3/3)
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Represent all inputs of a LUT as one RRG sink, t
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* FPGAs w/full intra-cluster routing crossbars
— Implications for routing



CLB Architecture (Recap)
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Full Crossbar Intra-cluster Routing (1/6)
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* Typical of FPGAs 10+ years ago



2-LUT BLE
2-LUT BLE

Full Crossbar Intra-cluster Routing (2/6)
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* Each CLB input connects to each BLE input



2-LUT BLE
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Full Crossbar Intra-cluster Routing (3/6)

CLB inputs

* CLB inputs are equivalent



2-LUT BLE
2-LUT BLE
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n
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CLB inputs

Full Crossbar Intra-cluster Routing (4/6)

* No need to model intra-cluster routing in the RRG



Full Crossbar Intra-cluster Routing (5/6)
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Full Crossbar Intra-cluster Routing (6/6)
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Don’t model the RRG inside each CLB! 27



Outline

* FPGAs w/sparse Intra-cluster routing crossbars
— Routing challenges
— New routing algorithms



Sparse Crossbar Intra-cluster Routing (1/6)
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* Most FPGAs today



Sparse Crossbar Intra-cluster Routing (2/6)
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* CLB inputs are not equivalent!



Sparse Crossbar Intra-cluster Routing (3/6)

CLB inputs 2-LUT BLE

in,

2-LUT BLE

Local feedbacks

* RRG must include the intra-cluster routing



Sparse Crossbar Intra-cluster Routing (4/6)
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Sparse Crossbar Intra-cluster Routing (5/6)
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Sparse Crossbar Intra-cluster Routing (6/6)

* Key Issues relating to RRG size
— May run out of memory

* |f you are not routing in the cloud

— Long router runtimes

* Large search space leads to slow convergence
* Thrashing

* Objective
— Route without expanding the whole RRG



Routing Algorithms

Extensions to PathFinder routing algorithm
— Routes one net at a time via wavefront expansion

Baseline
— Extend the RRG with intra-cluster routing at each CLB

Selective RRG Expansion (SERRGE)
— Route nets to CLB inputs
— Dynamically expand the RRG to finish the route

Partial Pre-Routing (PPR)

— Pre-route all nets within CLBs
— Complete global routes to CLB inputs



Baseline Router
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* |nputs of the same LUT are equivalent!



SERRGE in Action (1/8)

I/O Pads

CLB

Switch Block

Start with a global RRG

(S Block)

T~ Connection Block
(C Block)

31



SERRGE in Action (2/8)
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SERRGE in Action (3/8)
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SERRGE in Action (4/8)
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Maintain one copy of the intra-cluster topology



SERRGE in Action (5/8)
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Expand the fanout of the CLB input being routed



SERRGE in Action (6/8)

CLB inputs 2-LUT BLE
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Complete the route if possible; if not, try again



SERRGE in Action (7/8)
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SERRGE in Action (8/8)
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SERRGE Summary

Global routing uses standard PathFinder

Selectively expand portions of the RRG to complete
routes from CLB inputs to BLE inputs

Storage Requirement

— Global RRG (standard PathFinder requirement)
— One copy of the intra-cluster routing topology
— All intra-cluster routes computed thus far

Fairly challenging to implement!



PPR in Action (1/4)

CLB inputs 2-LUT BLE

Local feedbacks

Process CLBs one at a time



PPR in Action (2/4)

CLB inputs 2-LUT BLE

Local feedbacks

Compute local routes for each BLE



PPR in Action (3/4)

CLB inputs 2-LUT BLE

Local feedbacks

CLB inputs now form equivalence classes.



PPR in Action (4/4)
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PPR Summary

Pre-route each CLB

Propagate LUT equivalences to CLB inputs

— A baseline router on the full-blown RRG would still need
to satisfy BLE input-pin equivalence constraints

Route as normal

Much easier implementation than SERRGE
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* Experimental Results



Experimental Setup

e VPR5.0, iFAR FPGA architecture files
— Crossbar population density, p = {25%, 50%, 75%, 100%}
— LUTsize=K={4,5, 6, 7}
— BLEs per cluster, N = {4, 6, 8, 10}

e 10 largest IWLS benchmarks
— Results are averaged

 VPR-PathFinder runs for 100 iterations, then stops
— Baseline (full-blown RRG)
— SERRGE

— PPR
— VPR 5.0 (when crossbar population density is 100%)



Routability as a Function of LUT Size
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Routability as a Function of CLB Size
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Runtime as a Function
of Population Density
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N=8 BLEs per cluster



Runtime as a Function of LUT Size
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p = 100% population density



PPR Intra-cluster Routing Runtime
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Static and Dynamic RRG Size
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K=6-LUTs sized to the application, and are
N=8 BLEs per cluster smaller than commercial products



Critical Path Delay
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N=8 BLEs per cluster
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e Conclusion



Conclusion

 Addressed FPGA routing algorithms where CLBs
have sparse intra-cluster routing crossbars

 Minimal modifications to PathFinder required

* SERRGE vs. PPR

— SERRGE achieves better routability
— PPR converges faster
— PPR easier to implement



