
Reconfigurable Out-of-Order Mechanism 
Generator for Unstructured Grid Computation 
in Computational Fluid Dynamics 

Dept. of Information and Computer Science, Keio Univ. 
Takayuki Akamine, Kenta Inakagata, Hideharu Amano 

Dept. of Electrical and Electronics Engineering, Ryukyu Univ. 
Yasunori Osana 

Aerospace Research and Development Directorate 
Japan Aerospace Exploration Agency 

Naoyuki Fujita 
 

Presenter
Presentation Notes
Thank you for the introduction, Mr. chairman.
Good Afternoon,  I’m Takayuki Akamine from Keio University.
I would like to make the presentation about “reconfigurable out-of-order mechanism generator for unstructured grid computation in computational fluid dynamics”



Agenda 
1. Motivation 

o CFD and FaSTAR,  
o and Unstructured Grid 

2. RAW hazards 
3. Out-of-Order Mechanism 
4. Evaluation 
5. Conclusion 

 

2 

Presenter
Presentation Notes
At first, I will talk about motivation of this work.



• CFD(Computational Fluid Dynamics) 
o Computer simulation for analyzing fluid behavior 
o Design Tool for aircraft components such as engines and bodies 
o Huge amount of computation 

• FaSTAR(FAST Aerodynamic Routines) 
o A CFD package program developed by JAXA 
o Adopts an unstructured grid for grid form 
o Reaches a limit of acceleration by software parallel execution 
 

• FPGA acceleration 
o Highly flexible to fit an algorithm 
o A promising approach for accelerating FaSTAR 

 

Background 

3 

Presenter
Presentation Notes
Computational Fluid Dynamics is one of scientific computing.
It is a helpful tool to analyze fluid behavior for designing aircraft components such as engines and bodies.
However, a CFD simulation requires a lot of time because of huge amount of computation.

In such application, there is FaSTAR, a CFD package program developed by JAXA
It adopts unstructured grid mesh for grid form data.
Unstructured grid is good at expressing a complicated shaped, and it saves labor for generating grid data.
According to JAXA’s report, FaSTAR reaches a limit of acceleration by software parallel execution.


Then, we investigate to accelerate FaSTAR with FPGAs.
FPGA has high flexibility, and adaptability for a certain algorithm.
Hardware tuning using an FPGA is a promising approach for accelerating  FaSTAR.



• Kentaro Sano, et al. [FCCM2007] 
o A Systolic Architecture for Computational Fluid Dynamics on FPGAs 
o Implementation of the fractional method 

• Hirokazu Morishita, et al. [FPT2008] 
o Exploiting Memory Hierarchy for a Computational Fluid Dynamcis 

Accelerator on FPGAs 
o Implementation of MUSCLE (Monotone Upstream-centered Schemes for 

Conservation Laws) in UPACS 
• Diego Sanchez-Roman, et al. [SPL2011] 

o An Euler solver accelerator in FPGA for computational fluid dynamics 
applications  

o Implementation of an Euler solver using unstructured mesh with Impulse C 
 

Related Work 

4 

In this work, 
1. Our target is a CFD package using unstructured grid 
2. In order to avoid the overhead of high-level synthesis, a HDL 

generator will be proposed 

Presenter
Presentation Notes
I will show you related work.
The first work is implementation of fractional method, 
The second is implementation of MUSCLE in UPACS,
The third is implementation of an Euler solver using unstructured grid with high-level synthesis.  

In the first and second work, target applications used structured grid.
In the third work, High-level synthesis used for implementation.

In this work,
Our target is a CFD package using unstructured grid
In order to avoid the overhead of High-level synthesis, HDL generator will be proposed




Unstructured Grid 

• How to access unstructured grid 
o Accessing a face, two contiguous grids 

sharing the face (cell-A, cell-B) are 
accessed 

o Faces are accessed in ascending order 
• Spatial locality of variables 

o Each grid has different number of faces 
• Irregular memory access 

 

5 

Q1 
Q2 

Q3 

Q4 

face: k 

A B 

face: k+1 

Ｆ 

A 
B 

Ｆ 
In FaSTAR, grid data has data locality,  
but memory access has no regularity 

• Unstructured Grid 
o It is good at expressing complicated shapes 
o Grid data are generated automatically 

Presenter
Presentation Notes
Unstructured grid is different from structured grid because it does not placed regularly.
Unstructured grid is good at express complicated shapes.
Using unstructured grid, the grid data can be generated automatically.

Each application has its own method to access a grid.
In FaSTAR, faces are used to access grids.
Accessing a face, two contiguous grids sharing the face, named cell-A, and cell-B respectively, are accessed.
This is an example of unstructured grids. 
If face-k is accessed, Q2 is accessed as cell-A, and Q1 is as cell-B. 
As well as face-k, if face-k+1 is accessed, Q1 is cell-A, and Q4 is cell-B.

Additionally, faces are accessed in ascending order. 
It means the variables has spatial locality.

Moreover, each grid has different number of faces. 
This makes memory accesses irregular and unpredictable.

 In FaSTAR, grid data has data locality, but memory access has no regularity.



Agenda 
1. Motivation 

o CFD and FaSTAR,  
o and Unstructured Grid 

2. RAW hazards 
3. Out-of-Order Mechanism 
4. Evaluation 
5. Conclusion 

 

6 

Presenter
Presentation Notes
Here, I will explain a target problem: RAW hazard.




RAW hazards 

Block 
RAM 

read address 

write address 
read quantity 

Synchronizer 

Summation 
 

address 

7 

• RAW hazard is critical problem in FaSTAR 

Floating-Point 
Adder updated 

quantity 

1 1 1 2 2 3 4 4 

d1 d2 d3 d4 d5 d6 d7 d8 d2 d3 d4 d5 d6 d7 d8 

1 1 2 2 3 4 4 1 

s1 

d1 

16-stage pipeline 

s1’ 

Address FIFO 

Quantity data FIFO 

RAW hazards wait for 16 clock cycles can’t go to the pipeline 

Presenter
Presentation Notes
In FaSTAR, RAW hazards occur and degrade performance.
This diagram shows a part of solver in FaSTAR.
It calculates a total quantity value for each grid, 
and BlockRAM has partial summation results.
Numbers in address FIFO are addresses for the BlockRAM.

I will show you how this diagram works.
At first, the first data whose address is “1” is inputted, and “s1” is obtained from BRAM, 
and “s1” added to “d1”.
The floating-point adder has a 16-stage pipeline.
So, next data can’t go to the pipeline because “s1” is already used.
Next data should wait until “s1’” goes back to the same entry.
Thus, RAW hazards waste 15 clock cycles.

Moreover, unstructured grid makes it impossible to predict RAW hazards. 



Avoiding RAW hazards 

Block 
RAM 

read address 

write address 
read quantity 

Synchronizer 

Summation 
 

address 

8 

Floating-Point 
Adder updated 

quantity 

1 1 1 2 2 3 4 4 

d1 d2 d3 d4 d5 d6 d7 d8 d2 d3 d4 d5 d6 d7 d8 

1 1 2 2 3 4 4 1 

s1 

d1 

can’t go to the 
pipeline 

Address FIFO 

Quantity data FIFO 

Not related to “s1”, 
can go to the  pipeline 

• RAW hazards would be avoided by changing the order 
of data 

• Data should be reordered dynamically 

Presenter
Presentation Notes
We considered how to reduce RAW hazards.
I will show you the same diagram.
As well, “s1” is accessed first.
When “s1” is processed in the floating-point adder, RAW hazards occur.
In this moment, data, whose address is “2”, is not related to “s1”,
and the data can go to the pipeline.
Due to the same reason, data, whose address is “3” or “4”, can go to the pipeline.

Thus, we think that RAW hazards would be reduced by reordering data,
and data should be reordered dynamically



• Reducing hazards in 5 solvers 
1. Surface integral of flux(Surface) 
2. Green Gauss 
3. Summation of fluxes’ eigenvalue(Sum Eigen) 
4. Maximum of fluxes’ eigenvalue(Max Eigen) 
5. Coefficient Initialization(Coefficient) 

 

• An out-of-order(OoO) mechanism 
 
 
• An OoO mechanism generator  

 

Goal of this work 

9 

All suffer from RAW 
hazards 

Presenter
Presentation Notes
In this work, we would like to reduce hazards in 5 solvers which suffer from RAW hazards in FaSTAR computation:
Surface, Green Gauss, Sum Eigen, Max Eigen, and Coefficient.


Here, we would like to propose an out-of-order mechanism.
Although the mechanism is applied to each computation,
it is tiring to design the mechanism for each solver.
To avoid this work, the mechanism is generated automatically by using a generator program.



Agenda 
1. Motivation 

o CFD and FaSTAR,  
o and Unstructured Grid 

2. RAW hazard 
3. Out-of-Order Mechanism 
4. Evaluation 
5. Conclusion 

 

10 

Presenter
Presentation Notes
Here, I will explain the out-of-order mechanism
 including overview, architecture, behavior, and parameter.



Overview 

11 

• Changing the order of data dynamically so as to resolve 
data dependencies 

• Unlike common OoO mechanisms in general purpose 
CPUs†, the mechanism is devoted to single arithmetic 
unit 

a b c d e f g h 

1 1 1 2 2 3 4 4 
Address FIFO 

Quantity  data FIFO 

OoO mechanism   

Execution 
Monitor 

Waiting 
Buffer 

1 2 3 4 1 2 

Holds data temporarily 

Original order Post-reordered 
(ideal) 

a d f g b e 

Shows which addresses 
are computed 

†“ An Efficient Algorithm for Exploiting Multiple Arithmetic Units”,  
  Robert Tomasulo, IBM Journal of Research and Development(1967) 

Presenter
Presentation Notes
This is an overview of the out-of-order mechanism.
The mechanism changes the order of data dynamically so as to resolve data dependencies. 
In this diagram, the data are inputted in this order.
Passing through the mechanism, the order of data is changed as this.

Unlike common out-of-order mechanisms in general purpose CPUs,
the mechanism is devoted to a single arithmetic unit, but the data are often vector.

The mechanism has two types of registers: an execution monitor and a waiting buffer.
The execution monitor shows which address is computed in the arithmetic unit. 
With the information, it decides whether incoming data can go to the arithmetic unit or not.
If data cannot go to the arithmetic unit, the data are stored to the waiting buffer.
Stored addresses are compared with those in the execution monitor.



Architecture 

12 

Assumption 
• 4 stage-pipeline arithmetic 
• Two-dimensional vector 

quantity  

Out-of-Order 
mechanism 

Arithmetic 
Unit 

Input 
queue 

≠? 

≠? 

≠? 

≠? 

≠? 

≠? 

≠? 

≠? 

comparators 

4-entry 
execution monitor 

Pointer decides which 
entry would be updated 

2×2 waiting buffer 

Only the first element 
is compared 

Presenter
Presentation Notes
This is an example of architecture.
In this example,  the arithmetic unit has a 4 stage-pipeline.
Two-dimensional quantity data will be processed.
Vector data are inputted sequentially. 
That is, the first element of the vector is inputted at the first step, and the next is inputted in the second step.

Under this assumption, the out-of-order mechanism has a 4-entry execution monitor.
This pointer decides which entry would be updated, and move the next entry clock by clock.
Data from input queue is compared with all addresses in the execution monitor in every 2 clock cycles.

In this example, two by two waiting buffer is prepared. 
A set of waiting buffer is composed with two buffers because of two-dimensional quantity.
Here, two sets of waiting buffer are prepared.
If incoming data cause RAW hazards, data should be stored into this waiting buffer.
Only the first element is compared with all entries in the execution monitor, and the second element follows it.



Out-of-Order 
mechanism 

≠? 

≠? 

≠? 

≠? 

≠? 

≠? 

≠? 

≠? 

comparators 

Arithmetic 
Unit 

1 
2 

Behavior 

13 

input 
queue 

0 clock 2 clock 4 clock 6 clock 8 clock 

1 
2 

1 

2 

D 

D 

4 
3 

3 

4 

5 
6 

6 

5 

5 
6 

1 

2 

Recording 
addresses  
same address 

→ incoming data 
have to wait 

Updated 
→Processing finished 

can go to the 
arithmetic unit 

same address 
→incoming data 

have to wait 

Go to the 
arithmetic unit 

10 clock 

Assumption 
• 4 stage-pipeline arithmetic 
• Two-dimensional vector 

quantity 

Presenter
Presentation Notes
This slides shows the behavior.
These numbers are addresses of BlockRAM,
and compared with those in the execution monitor.

At the 0th clock, data whose address is “1”, are inputted.
There is no same address in the execution monitor so that the arithmetic can process the input.
The data go to the arithmetic unit, and the addresses are recorded in the execution monitor.

At 2nd clock, there is still the same address in the execution monitor.
Thus, data should be stored to waiting buffer.

At 4th clock, new address arriving.
It  can be inputted to the arithmetic unit directly.
Then the address in this boxes are overwritten by the incoming address.
This means that the first data finished being processed, and these data can  be processed.

At 6th clock, new address is inputted.
These data are inputted to the arithmetic unit straightly.

At 8th clock, these data causes hazards, and should be stored in the waiting buffer.
Instead of incoming data, the stored data go to the arithmetic unit.



Parameters 

14 

• Parameterization supports us to generate various types 
of OoO mechanism 

 

 
• latency is set as same number of pipeline depth in an 

arithmetic unit 
o latency decides the number of entries in an execution monitor 

 
• dimension is quantity vector dimension 
• set is the parameter decided by a designer 

o “set×dimension” equals to the number of waiting buffer 

 

Presenter
Presentation Notes
In order to generate various types of OoO mechanism, the mechanism must be parameterized.
Main parameters decide the number of registers in an execution monitor and a waiting buffer.

Then, I’ll introduce main three parameters: latency, dimension, and set.
latency is set as same number of pipeline depth in an arithmetic unit.
latency is the parameter to decide the number of entries in an execution monitor.

dimension is quantity vector dimension
Set is the parameter which is decided by a designer.
Note that the product of dimension and set equals to the number of waiting buffer.




Agenda 
1. Motivation 

o CFD and FaSTAR,  
o and Unstructured Grid 

2. RAW hazards 
3. Out-of-Order Mechanism 
4. Evaluation 
5. Conclusion 

 

15 

Presenter
Presentation Notes
Finally, I will talk about evaluation, and conclude this work.



Evaluation Environment 

16 

 FPGA ： Xilinx Virtex-4 XC4VLX100 
 Double-precision floating-point units based on IEEE754 
 Floating point units, BlockRAMs and FIFOs are generated by Xilinx 

CORE Generator 
 Synthesis ： Xilinx ISE 13.2 
 Test dataset ： grid data around 22,883 faces 
 

 
computation operation 

type 
latency dimension Iteration 

Surface Adder 16 5 1000 
Green Gauss Adder 16 4 1000 
Sum Eigen Adder 16 1 1000 
Max Eigen Comparator 3 1 1000 
Coefficient Adder 16 6 1 

Table1. Parameters on each solver 

Presenter
Presentation Notes
Evaluation environment is shown as this slide.
Target FPGA is Xilinx Virtex-4 XC4VLX100.
This FPGA is rather old, but it is used in FLOPS-2D, which is reconfigurable accelerator we are exploiting.

As test data, we used grid data around 22,883 faces.

We applied the mechanism to five solvers in FaSTAR, where RAW hazards occur. 
Parameters on each computations are shown here.
Only Max Eigen uses a comparator, 
they have different dimension, 
and only coefficient is iterated once.



Hazards reduction 

• Increasing set reduced the number of RAW hazards 
• In most cases,  hazards were eliminated when set is 2 
• Sum Eigen needed 7 sets for removal of hazards 

graph1：the number of hazards with increasing set 

0 

5000 

10000 

15000 

20000 

25000 

non 1 2 3 4 5 6 7 8 9 

th
e 

nu
m

be
r o

f h
az

ar
d 

the number of set(waiting buffer) 

Surface 

Green Gauss 

Sum Eigen 

Max Eigen 

Coefficient 

17 

 

Presenter
Presentation Notes
At first, we examined the relationship between the hazard reduction and the number of waiting buffer.

As this graph shows, increasing set reduced the number of hazards.
However, it might stretch critical path delay.

In most cases, when set is 2, hazards are eliminated enough.

Sum Eigen needs about 7 sets of waiting buffer for removal of  hazards.
Since it uses scalar data, the penalty is worst in all solvers.
Fortunately, the delay is not so stretched in this solver, 
and the hardware requirement is not so large.
So, we selected 8 sets for this solver.



Acceleration evaluation 

18 

• Software execution: 
o Intel Core2Duo CPU(2.66GHz) 
o Linux kernel ver2.6 
o Intel Fortran Compiler 10.4 

0 
1 
2 
3 
4 
5 
6 
7 
8 

software execution  In-order execution 
on an FPGA 

OoO execution on an 
FPGA 

el
ap

se
d 

tim
e(

se
c)

 
Coefficient 
Max Eigen 
Sum Eigen 
Green Gauss 
Surface 

7.49 sec 
6.65 sec 

2.60 sec 

• 2.88-fold speed-up with Intel 
Core2Duo CPU 

• 2.55-fold speed-up with in-order 
execution on an FPGA 
o 6.7-fold speed-up in Sum Eigen 

Presenter
Presentation Notes
We examined the benefit of hazards reduction, and compared FPGA execution with CPU execution.
We compared out-of-order execution with in-order execution on FPGAs too.
Software execution is measured with this environment.

As shown in this picture,  FPGA with the mechanism processed 2.88 times as fast as Intel Core2Duo.
The mechanism achieved 2.55-fold speed-up to in-order execution.

Sum Eigen, represented green box , is the most successful case because it suffers from critical penalty of hazards.
Using the mechanism, 6.7-fold speed-up is achieved compared with in-order execution.



Resource Overhead  

• About 27% of resource overhead is required for peak 
performance on average 
o The total overhead in an FPGA is 3.5% on average 

• Increase ratio of Sum Eigen is the biggest, but the 
impact of total resource is not so large 

19 

Computation Slice usage 
(in-order) 

Slice usage 
(on-peak) 

Increase ratio Occupation 
Increase 

Surface 10473 12889 23.1% 4.91% 

Green Gauss 10528 12113 15.1% 3.22% 

Sum Eigen 6215 9106 45.6% 5.88% 

Max Eigen 3294 4149 26.0% 1.73% 

Coefficient 10530 11617 24.6% 2.21% 

Presenter
Presentation Notes
This table shows resource overhead on peak performance.

About 27% of resource overhead is required, and the total overhead in the FPGA is 3.5% on average.
Considering speed-up, it might be reasonable

Increase ratio of Sum Eigen is the biggest, but the impact of total resource is not so large

That is all about evaluation.



Agenda 
1. Motivation 

o CFD and FaSTAR,  
o and Unstructured Grid 

2. RAW hazard 
3. Out-of-Order Mechanism 
4. Evaluation 
5. Conclusion 

 

20 

Presenter
Presentation Notes
Finally, I will talk about evaluation, and conclude this work.



Conclusion 
• The out-of-order mechanism is applied to five 

solvers in FaSTAR 
o In most cases,  the hazards are eliminated when set is 2 
o The mechanism achieved 2.88-fold speed-up to Intel Core2Duo,  
     and 2.55-fold speed-up to in-order execution on an FPGA 
 
 

• Future work 
o Evaluation should be done with various grid data sample 
o Critical path delay should be reduced for further acceleration by 

using pipeline processing 

21 

Presenter
Presentation Notes
In this work, we applied the out-of-order mechanism to five solvers in FaSTAR.
We examine stall reduction and acceleration.
In most cases, when set is 2,  the stalls are eliminates.
On peak performance, the mechanism achieved 2.88 speed-up to Intel Core2Duo, 
and 2.55-fold speed-up to in-order execution.

In future works, we should evaluates the mechanism with more grid data sample.
Critical path delay should be reduced for further acceleration by using pipeline processing.



Thank you. 
 

Q&A 

22 

Presenter
Presentation Notes
That’s all.
Thank you for your attention


	Reconfigurable Out-of-Order Mechanism Generator for Unstructured Grid Computation in Computational Fluid Dynamics
	Agenda
	Background
	Related Work
	Unstructured Grid
	Agenda
	RAW hazards
	Avoiding RAW hazards
	Goal of this work
	Agenda
	Overview
	Architecture
	Behavior
	Parameters
	Agenda
	Evaluation Environment
	Hazards reduction
	Acceleration evaluation
	Resource Overhead 
	Agenda
	Conclusion
	Thank you.��Q&A

