
HeAP:
Heterogeneous Analytical

Placement for FPGAs
FPL 2012

Marcel Gort and Jason Anderson

2

Motivation
• CAD for FPGAs takes too long (up to a day).
• FPGA placement contributes to a large proportion of

overall CAD time.
• In ASIC domain, where millions of cells are handled by

placement, fast analytical methods dominate.
• Recent work [1] adapted FastPlace to

homogeneous FPGAs.
• vs. VPR: ~13x speedup with 20% worse wirelength.

• Can we use analytical methods to place cells onto a
realistic heterogeneous FPGA?

1. Bian H., Ling A., Choong A., Zhu J. Towards scalable placement for FPGAs. in FPGA 2010

3

Analytical Placement (AP)
• Objective function: Half-Perimeter Wirelength (HPWL)
• Minimizing objective function:

– Solve system of linear equations generated from connections
between cells.

1. Convert multi-pin nets to 2-pin nets.
2. Create system of linear equations to solve weighted sum of

squared distances between cells.
3. Solve system using off-the-shelf linear systems solver.

4

Φ = Min [(XB – XA)2 + (XC – XB)2 + (XA – 0)2 + (3 – XC)2]

A B C

0 1 2 3

IO IO

5

 2 -1 0
-1 2 -1
 0 -1 2

X
XA
XB
XC

=
 0
 0
 3

A B C

0 1 2 3

IO IO

6

 2 -1 0
-1 2 -1
 0 -1 2

X
XA
XB
XC

=
 0
 0
 3

XA = 0.75, XB=1.5, XC=2.25

A B C

0 1 2 3

IO IO

7

 2 -1 0
-1 2 -1
 0 -1 2

X
XA
XB
XC

=
 0
 0
 3

XA = 0.75, XB=1.5, XC=2.25

A B C

0 1 2 3

IO IO

8

Actual Solved Solution

Need to spread cells!

9

AP Overview

Solve

Generate X and Y
matrices based

on netlist

Spread cells to
legalize solution

Good enough?

Perturb formulation
based on spreading

Refinement

Yes

No

10

Legalized Solution

11

Spreading
• Adapted from SimPL [2].
• Find over-utilized area.

2. Myung-Chul K., Dong-Jin L., Markov I. SimPL: An Effective Placement Algorithm. in ICCAD 2010

12

Spreading
• Adapted from SimPL [2].
• Find over-utilized area.
• Find a larger surrounding area that can accommodate all

cells within it.

13

Spreading
• Adapted from SimPL [2].
• Find over-utilized area.
• Find a larger surrounding area that can accommodate all

cells within it.
• Split the cells into two sets.

14

Spreading
• Assign an area to each cell which is proportional to the

total area of the cells.

15

Spreading
• Assign an area to each cell which is proportional to the

total area of the cells.
• Spread each set of cells separately, within the area

assigned to it.

16

Spreading
• Assign an area to each cell which is proportional to the

total area of the cells.
• Spread each set of cells separately, within the area

assigned to it.
• Alternate x and y spreading directions until

solution is legal.

17

Spreading
• Assign an area to each cell which is proportional to the

total area of the cells.
• Spread each set of cells separately, within the area

assigned to it.
• Alternate x and y spreading directions until

solution is legal.

18

Spreading
• Assign an area to each cell which is proportional to the

total area of the cells.
• Spread each set of cells separately, within the area

assigned to it.
• Alternate x and y spreading directions until

solution is legal.

19

20

21

22

23

24

25

AP Overview

Solve

Generate X and Y
matrices based

on netlist

Spread cells to
legalize solution

Perturb formulation
based on spreading

Refinement

Yes

No Good enough?

26

Pseudo-connections

A

B

C

0 1 2 3

IO IO Solved solution

Legalized solution

A

B

C

0 1 2 3

IO IO

27

Pseudo-connections

A

B

C

0 1 2 3

IO IO Solved solution

Legalized solution

A

B

C

0 1 2 3

IO IO

28

Pseudo-connections

A

B

C

0 1 2 3

IO IO Solved solution

Weighted pseudo-connections between
cells and their legalized placements.

29

AP Overview

Solve

Spread cells to
legalize solution

Good enough?

Perturb formulation
based on spreading

Refinement

Yes

No

Re-generate X and Y
matrices based on

perturbed formulation

30

HeAP
• Analytical placement framework that targets

commercial FPGAs.
– Currently supports Cyclone II FPGAs.
– Supports RAMs, DSPs, LABs, hard macros (carry chains).

• Uses Quartus University Interface Program (QUIP) to
replace the placer in Quartus II.

31

AP for FPGAs
FPGA ASIC

32

AP for FPGAs
FPGA ASIC

33

AP for FPGAs
FPGA ASIC

34

AP for FPGAs
FPGA ASIC

• Snap to Grid – cut generation in spreading is multi-objective.

35

AP for FPGAs
FPGA ASIC

• Snap to Grid – cut generation in spreading is multi-objective.
• Carry chains – relative cell placements must be maintained.

36

AP for FPGAs
FPGA ASIC

• Snap to Grid – cut generation in spreading is multi-objective.
• Carry chains – relative cell placements must be maintained.
• Cell type can only fit in correct slot type (e.g. RAMs in RAM slots).

37

AP for FPGAs – Spreading
FPGA

• Spread each cell type separately.
• Maintain legality.

38

AP for FPGAs – Spreading

• Spread each cell type separately.
• Maintain legality.

39

AP for FPGAs – Spreading

• Spread each cell type separately.
• Maintain legality.

40

AP for FPGAs – Spreading

• Spread each cell type separately.
• Maintain legality.

41

AP for FPGAs – Spreading

• Spread each cell type separately.
• Maintain legality.

42

AP for FPGAs – Spreading

• Spread each cell type separately.
• Maintain legality.

43

AP for FPGAs – Spreading

• Spread each cell type separately.

• Handle legality in spreading.

44

AP for FPGAs – Solving

• Solver doesn’t know about resource constraints but…
– We can encourage solver to place a cell close to a legal slot by

adding a pseudo-connection between that cell and the slot.
– After enough iterations, solver will begin to generate solutions

that are close to legal.

45

AP for FPGAs – Solving

• Solver doesn’t know about resource constraints but…
– We can encourage solver to place a cell close to a legal slot by

adding a pseudo-connection between that cell and the slot.
– After enough iterations, solver will begin to generate solutions

that are close to legal.

46

• Solver doesn’t know about resource constraints but…
• We can encourage solver to place a cell close to a legal slot by

adding a pseudo-connection between that cell and the slot.
• After enough iterations, solver will begin to generate solutions

that are close to legal.

AP for FPGAs – Solving

47

• Solver doesn’t know about resource constraints but…
• We can encourage solver to place a cell close to a legal slot by

adding a pseudo-connection between that cell and the slot.
• After enough iterations, solver will begin to generate solutions

that are close to legal.
• Solve different types of cells together or separately?

AP for FPGAs – Solving

48

Solving Orders

Solve all

Spread DSPs

Spread RAMs

Spread LABs

Solve all

Spread DSPs

Spread RAMs

Spread LABs

All
Initial Placement

49

Solving Orders

Solve all

Spread DSPs

Spread RAMs

Spread LABs

Solve all

Spread DSPs

Spread RAMs

Spread LABs

All
Initial Placement

Solve DSPs

Spread DSPs

Spread RAMs

Spread LABs

Spread DSPs

Solve RAMs

Solve LABs

Solve DSPs

Rotate
Initial Placement

50

Solving Orders

Solve all

Spread DSPs

Spread RAMs

Spread LABs

Solve DSPs

Spread DSPs

Spread RAMs

Spread LABs

Solve RAMs

Solve LABs

All + Rotate

Solve all

Initial Placement

51

Solving Order Convergence Rate

Legalized

Solved

52

Experimental Methodology
1. Used Altera Quartus II to generate:

– I/O placement
– Cell packing

2. Run HeAP, targeting smallest of three Cyclone II FPGAs
on which benchmark will fit.

3. Quartus II verifies legality and generates
post-routing results.

53

Experimental Methodology
• vs. Quartus II:

– All 4 cores of Intel core i5 using various Quartus effort levels.

• HeAP parallelization
– During solving, x and y directions solved simultaneously.
– During refinement, “move suggestion” phase parallelized.

• vs. Simulated Annealing (SA):
– Code from non-timing driven VPR placement (“fast”).

• 10 largest benchmarks from CHStone,
QUIP, and MCNC.

54

Placement Run-time

10x speedup

4x speedup

55

HPWL Comparison

7% reduction

56

Wirelength vs. Run-time
Landscape

• Varied Quartus Placement effort from 0.1, 0.5, 1.0, 2.0.
• Varied fitter effort level between auto and standard.
• Ran in timing and non-timing driven modes.

57

Wirelength vs. P&R Run-time
Landscape

58

Wirelength vs. P&R Run-time
Landscape

59

Wirelength vs. P&R Run-time
Landscape

60

FMax vs. P&R Run-time
Landscape

Effort = 0.1
Effort = 0.5

61

FMax vs. P&R Run-time
Landscape

Effort = 0.1
Effort = 0.5

62

Conclusions
• AP can work well for Heterogeneous FPGAs.

• Add pseudo connections to legal cell locations.
• To obtain high quality and high speed, mix solving for each cell

type separately and solving for cell types together.
• HeAP offers better run-time and wirelength than

some Quartus II low effort placement runs.
• HeAP is unable to equal high-effort, high-quality results

obtained using Quartus II.
• Compared to Quartus II run with default effort levels:

– 4x faster than non-timing driven flow with 5% worse wirelength.
– 11x faster than timing-driven flow with 4% worse wirelength and

9% worse FMax.

63

Future Work
• Timing-driven AP

• 9% worse FMax when ignoring timing in placement. Can we
improve on that?

• Quality-driven spreading
• Spreading objective function does not consider wirelength.

Questions?

	HeAP:�Heterogeneous Analytical Placement for FPGAs
	Motivation
	Analytical Placement (AP)
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Actual Solved Solution
	AP Overview
	Legalized Solution
	Spreading
	Spreading
	Spreading
	Spreading
	Spreading
	Spreading
	Spreading
	Spreading
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	AP Overview
	Pseudo-connections
	Pseudo-connections
	Pseudo-connections
	AP Overview
	HeAP
	AP for FPGAs
	AP for FPGAs
	AP for FPGAs
	AP for FPGAs
	AP for FPGAs
	AP for FPGAs
	AP for FPGAs – Spreading
	AP for FPGAs – Spreading
	AP for FPGAs – Spreading
	AP for FPGAs – Spreading
	AP for FPGAs – Spreading
	AP for FPGAs – Spreading
	AP for FPGAs – Spreading
	AP for FPGAs – Solving
	AP for FPGAs – Solving
	AP for FPGAs – Solving
	AP for FPGAs – Solving
	Solving Orders
	Solving Orders
	Solving Orders
	Solving Order Convergence Rate
	Experimental Methodology
	Experimental Methodology
	Placement Run-time
	HPWL Comparison
	Wirelength vs. Run-time�Landscape
	Wirelength vs. P&R Run-time Landscape
	Wirelength vs. P&R Run-time Landscape
	Wirelength vs. P&R Run-time Landscape
	FMax vs. P&R Run-time Landscape
	FMax vs. P&R Run-time Landscape
	Conclusions
	Future Work
	Questions?

