Multi-kernel Floorplanning for Enhanced CGRAs

Aaron Wood, Adam Knight, Benjamin Ylvisaker, Scott Hauck

Coarse-Grained Reconfigurable Architectures

- Lots of ALUs
- Word oriented interconnect
- Embedded memory
- Fine grained control
- FPGA style
 configurability

Time Multiplexing

- Small per cycle configurations
- Pipelined applications
- Scheduled interconnect

Multiple Kernels

- Physical regions
- Independent control domains
- Flow controlled interkernel links
- Composition of kernels

Resource Allocation

More resources = faster Limited total resources Maximize throughput

Throughput

1 sample / 12 cycles

Where do new resources go?

Throughput 1 sample / 12 cycles

Throughput 1 sample / 10 cycles

Or set of slowest kernels

Resource Allocation PET Event Detection Example

Where do new resources go?

Throughput 1 sample / 8 cycles

Resource Allocation PET Event Detection Example

What happened to the slowest kernel?

Resource Allocation Algorithm

- Allocate minimal resources to each kernel
- Do
 - Find kernel(s) limiting performance
 - Translate performance through port rates
 - Increment resources of these kernels
- Until
 - Resource exhausted
 - Limiting kernel(s) at recurrence II

Provably optimal algorithm

Allocation Progression

Initiation Interval Progression

Kernel Placement

Resource allocation:

$$\begin{array}{c} W \rightarrow X \rightarrow Y \rightarrow Z \end{array}$$

Simulated annealing to arrange allocated resources Cost function

Maintain cohesion of individual kernels Maintain abutment of communicating kernels

Cost Function

Kernel Cohesion

Perimeter 20

Perimeter 22

Cost Function

Extend metric to inter-kernel communication

Placement Results

Runtime dwarfed by other parts of the tool chain

- Wavelet application completes in less than a minute
- Many options for optimization incremental cost function

Арр	Min Cost	Generated Cost	Cost Ratio	Average Wirelength	Max Wirelength	Kernels
DWT	100	108	1.08	1.0	1.0	3
PET	44	44	1.00	1.0	1.0	2
Bayer	176	182	1.03	1.0	1.0	5
IPL	156	164	1.05	1.0	1.0	4
Wavelet	476	522	1.10	1.2	5.0	18

CAD Tools for Enhanced CGRAs

- Builds on capabilities of previous work
- Reduced design effort
 - Provides greater flexibility for the programmer
 - Maximizing performance for a given device
- A path toward processor array tools
 - Applicable to floorplanning these devices as well
 - Leverage greater independence between device sections

