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Contributions 
1. Novel optimisation for Explicit Finite Difference (EFD): 

– preserves result accuracy 
– reduces hardware resource consumption 
– reduces number of computational steps 

2. Two approaches to minimise: 
– hardware resource utilisation  
– amount of computation required in the algorithm 

3. Evaluation: 40% reduction in area-time product 
– 50%+ faster than before optimisation 
– 7+ times faster than static FPGA implementation 
– 5 times more energy efficient  than static FPGA implementation  
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Background 
 
• Financial put option 

– gives the owner the right but not the obligation to sell 
an asset S to another party at a fixed price K at a 
particular time T  

 
• Explicit Finite Difference (EFD) Method 

– useful numerical technique to solve PDEs 
– used for options with no closed-form solution 
– Discretises over asset price space (S) and time (t), and 

maps them onto to a grid 
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Background  
• The Black Scholes PDE and the EFD grid 
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Background 
• The entire EFD grid   

– updated from right to left, backwards in time t 
– updated by a stencil with coefficients α, β and γ  
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Background 

• Stencil computation mapped to FPGA 
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Background 
• Dynamic constant reconfiguration$ 

– reduce area, power and improve performance 
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Two Optimisation Methods 
Two methods to optimise high performance designs  

 
1.Use custom data formats* 

– to reduce area  
– preserve sufficient result accuracy 

2.Use constant specialisation and reconfiguration $ 

– further reduce area and energy consumption 
3.Is there a third method? 
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* “A mixed precision Monte Carlo methodology for reconfigurable accelerator systems”, Chow et. all 
$ “Dynamic Constant Reconfiguration for Explicit Finite Difference Option Pricing”, Becker et. all  



1. Novel Optimisation Method 

• To obtain the best trade-off: 
A. reduce hardware resource consumption  

• set the EFD grid carefully  
• minimise resource usage of constant multipliers 

B. reduce the number of computational steps 
required in the EFD grid 
• ensure the result meets the accuracy requirement 
• avoid unnecessary computation 
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Novel Optimisation Method: Approach 

• Normalising the option coefficients  
– fixed point datapaths used instead of floating point ones 
– less hardware resources consumed 

• Identifying efficient fixed point constants  
– yield smaller constant multipliers 
– adjust the EFD algorithm to make use of them 

• Reducing number of computational steps  
– make sure it is smaller than the original and  
– preserve result accuracy 
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Normalising Option Coefficients 
• Option descriptor κ≡(S, K, r, T, σ) 
• Option price f is unbounded 

– Since 0< K<∞ and 0< S< ∞ 

• Bits are wasted in fixed point 
– not all integer bits utilised all the time 

• κ can be normalised  
          κ’≡(S/K, 1 , rT, 1, σ√T) and f=Kf’ 
• 0 ≤ f ’ ≤1, f’ is bounded 

– bits are fully utilised  
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2. Efficient Fixed Point Constants 

 
1.Possibility of finding efficient constants 

 

2.Two approaches to scan the search space 
A. minimise hardware resource utilisation 
B. minimise the amount of computation 
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This will be discussed in two parts 



Possibility of Finding Efficient Constants 
• Assuming three B-bit fixed point constant multipliers 

are generated 
– based on coefficients α, β and γ  
– each use Nα, Nβ, Nγ units of resource (i.e. in LUTs) 
– Nα∈ L, Nβ∈ L, Nγ∈ L 
– L is a set containing all possible outcomes of resource 

consumption of B-bit constant multipliers 
– NL, the size of L depends on the implementation details of 

the fixed point library 
– P(Nα=x)= P(Nβ =y)= P(Nγ =z)=1/ NL where x,y,z ∈ L 

• due to complex optimisation techniques applied 
• assuming Nα, Nβ, Nγ are i.i.d. uniform random numbers in set L  
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Possibility of Finding Efficient Constants 

• The probability of getting any Nα, Nβ, Nγ 
combination is (1/ NL)3 

• The probability of finding a set of constants 
which halves the hardware resource is 
therefore 12.5% or (1/2)3 

• The probability to find 20% size reduction is 
51.2%  or (4/5)3 

• It is quite possible to find efficient constant 
combinations in the search space 
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Efficient Fixed Point Constants 

 
1.Possibility of finding efficient constants 

 

2.Two approaches to scan the search space 
A. minimise hardware resource utilisation 
B. minimise the amount of computation 
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Scanning the search space 
• Coefficients α, β and γ are flexible 

– certain properties must be met 
– ΔZ and Δt determines the coefficients 

• Grid density can be adjusted  
– ΔZ and Δt determines grid density 
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Simple Example 
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Simple Example 
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Minimising Hardware Resource Utilisation 

• Constants in the form of 2E (E ∈ Z) leads to 
smaller multipliers 
– multipliers are implemented by shift operators in 

fixed point arithmetic 

• Making α, β and γ close to form 2E 
– corresponding multipliers likely to be smaller 
– assuming the hardware resource consumption is 

related to the hamming weight of the constant  
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Minimising Hardware Resource Utilisation 
• The coefficients need to meet the following 

criteria: 
– α+β+γ=1, α>0, β>0, γ>0 
–  μ(r, σ, Δt) = μ’(α, β, γ, ΔZ)  

• mean, 1st moment 
– Var(σ, Δt) = Var’(α, β, γ, ΔZ)  

• variance, 2nd moment 
– Skew = Skew’(α, β, γ, ΔZ)  

• skewness, 3rd moment 
– Kurt = Kurt’(α, β, γ, ΔZ)  

• Kurtosis, 4th moment 
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Statistical Moments 
should be equal to 
EFD Moments  



Minimising Hardware Resource Utilisation 

• Make the EFD scheme converge 
– the criteria must be met 

• A minimisation routine  
– search around a efficient set of constants  

• (i.e. α=2E1, β=2E2, γ=2E3 or 0.25, 0.5, 0.25) 

– force the criteria to be met 
• first and second moments must match 
• differences in third and fourth moments minimised 
• grid convergence is guaranteed 
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Minimising Hardware Resource Utilisation 

• Pros: 
– possible to find very small constant multipliers  

• hardware consumption close to the 2E multipliers 

• Cons: 
– has no control over Δt or ΔZ 

• the EFD problem size can be unbounded 
• result accuracy is not guaranteed 

– requires a 2D search space (Δt, ΔZ)  
• some times not possible in business 

– Works under assumption 
• hamming weight is related to hardware resource consumption 
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Efficient Fixed Point Constants 

 
1.Possibility of finding efficient constants 

 

2.Two approaches to scan the search space 
A. minimise hardware resource utilisation 
B. minimise the amount of computation 
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Minimising Amount of Computation 
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Minimising Amount of Computation 
• Δt  is usually determined by business fact (fixed) 

– i.e. if options are exercised on a daily basis, Δt=1 day 
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Minimising Amount of Computation 

• With Δt fixed, find a λ (i.e. ΔZ, since λ = ΔZ/ Δt)  
– must meet the result accuracy requirement 
– ΔZ> ΔZtree , amount of computation is reduced 

• Search in [λ- ε,λ] 
– ε is a small number 
– find a set of coefficients with local optimal 

hardware consumption 
– result accuracy is guaranteed since relative error 

grows with λ 
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Minimising Amount of Computation 

• Pros 
– amount of computation in the result EFD grid is 

minimised  
– Result accuracy is guaranteed 
– fast search under simple search space (1D), no 

minimisation routine required 

• Cons 
– global optimal is NOT guaranteed 
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3. Evaluation: Implementation 

• Xilinx Virtex-6 XC6VLX760 FPGA, ISE 13.2 
• FloPoCo library for fixed point datapath 
• MPFR library for fixed point error analysis 
• Nelder-Mead multivariable routine in GNU 

scientific library for minimisation 
• Place and route results are reported 
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Experiment Setting 
• 23 bit fixed point number format is used 

– with 1 bit for integer and 22 bits for fraction 

• Relative error tolerance is 2E − 4 
– compared to double precision result 
– same level of accuracy is used in industry 

•  Δt is set as 1/365 
– Assuming daily observation in a 365-day year 

• Result compared to our previous work 
– 23 bit fixed point dynamic designs – unoptimised 
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A Typical Case 
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κ ≡ (S, K, r, T, σ) = (70, 70, 0.05, 1.0, 0.3). 

European option  

Result from implementations is compared to 
the Black Scholes formula result 



P&R Result: 1000 Typical Options 
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Future Work 

• Use more sophisticated hardware estimation 
tools for better result 

• Generalise the work to support more types of 
EFD schemes 

• Long term: address trade-offs  
– in speed, area, numerical accuracy, power and energy 

efficiency  
– for a variety of applications and devices 
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Summary 
1. Novel optimisation for Explicit Finite Difference (EFD): 

– preserves result accuracy 
– reduces hardware resource consumption 
– reduces number of computational steps 

2. Two approaches to minimise: 
– hardware resource utilisation  
– amount of computation required in the algorithm 

3. Evaluation: 40% reduction in area-time product 
– 50%+ faster than before optimisation 
– 7+ times faster than static FPGA implementation 
– 5 times more energy efficient  than static FPGA implementation  
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