
Optimising Explicit Finite Difference
Option Pricing For

Dynamic Constant Reconfiguration

1

Qiwei Jin*, David Thomas^, Tobias Becker*, and Wayne Luk*

*Department of Computing,

^Department of Electrical and Electronic Engineering,
Imperial College London

29 August 2012

Contributions
1. Novel optimisation for Explicit Finite Difference (EFD):

– preserves result accuracy
– reduces hardware resource consumption
– reduces number of computational steps

2. Two approaches to minimise:
– hardware resource utilisation
– amount of computation required in the algorithm

3. Evaluation: 40% reduction in area-time product
– 50%+ faster than before optimisation
– 7+ times faster than static FPGA implementation
– 5 times more energy efficient than static FPGA implementation

2

Background

• Financial put option

– gives the owner the right but not the obligation to sell
an asset S to another party at a fixed price K at a
particular time T

• Explicit Finite Difference (EFD) Method

– useful numerical technique to solve PDEs
– used for options with no closed-form solution
– Discretises over asset price space (S) and time (t), and

maps them onto to a grid

3

Background
• The Black Scholes PDE and the EFD grid

4

S

t

∆S

M∆S

j∆S

i∆t∆t 2∆t N∆t

fi, j
fi+1, j

fi+1, j+1

fi+1, j-1
α

β

γ

fi,M=0

fi,1=(K-∆S)

fN,j=(K-S)+

N

M

Background
• The entire EFD grid

– updated from right to left, backwards in time t
– updated by a stencil with coefficients α, β and γ

5

fi, j

fi+1, j

fi+1, j+1

fi+1, j-1
α(∆t,∆Z,κ)

β(∆t,∆Z,κ)

γ(∆t,∆Z,κ)

Z=lnS, κ≡(S, K , r, T, σ)

Background

• Stencil computation mapped to FPGA

6
EFD Kernel

ft1 ft2

α β γfi+1,j-1 fi+1,j fi+1,j+1

Mult Mult

Plus

Plus

Algorithmic Logic

Mult

s1 s2

Max

fi,j

fN+1,j

(Static)

Background
• Dynamic constant reconfiguration$

– reduce area, power and improve performance

7

EFD Kernel

ft1
ft2

fi+1,j-1 fi+1,j fi+1,j+1

Plus

Plus

Algorithmic Logic

s1 s2

Max

fi,j

fN+1,j

reconfigurable
area

Mult α Mult β Mult γ Constant multipliers,
reconfigure to update

(Dynamic)
$ “Dynamic Constant Reconfiguration for Explicit Finite Difference Option Pricing”, Becker et. all

Two Optimisation Methods
Two methods to optimise high performance designs

1.Use custom data formats*

– to reduce area
– preserve sufficient result accuracy

2.Use constant specialisation and reconfiguration $

– further reduce area and energy consumption
3.Is there a third method?

8

* “A mixed precision Monte Carlo methodology for reconfigurable accelerator systems”, Chow et. all
$ “Dynamic Constant Reconfiguration for Explicit Finite Difference Option Pricing”, Becker et. all

1. Novel Optimisation Method

• To obtain the best trade-off:
A. reduce hardware resource consumption

• set the EFD grid carefully
• minimise resource usage of constant multipliers

B. reduce the number of computational steps
required in the EFD grid
• ensure the result meets the accuracy requirement
• avoid unnecessary computation

9

Novel Optimisation Method: Approach

• Normalising the option coefficients
– fixed point datapaths used instead of floating point ones
– less hardware resources consumed

• Identifying efficient fixed point constants
– yield smaller constant multipliers
– adjust the EFD algorithm to make use of them

• Reducing number of computational steps
– make sure it is smaller than the original and
– preserve result accuracy

10

Normalising Option Coefficients
• Option descriptor κ≡(S, K, r, T, σ)
• Option price f is unbounded

– Since 0< K<∞ and 0< S< ∞

• Bits are wasted in fixed point
– not all integer bits utilised all the time

• κ can be normalised
 κ’≡(S/K, 1 , rT, 1, σ√T) and f=Kf’
• 0 ≤ f ’ ≤1, f’ is bounded

– bits are fully utilised
 11

2. Efficient Fixed Point Constants

1.Possibility of finding efficient constants

2.Two approaches to scan the search space
A. minimise hardware resource utilisation
B. minimise the amount of computation

12

This will be discussed in two parts

Possibility of Finding Efficient Constants
• Assuming three B-bit fixed point constant multipliers

are generated
– based on coefficients α, β and γ
– each use Nα, Nβ, Nγ units of resource (i.e. in LUTs)
– Nα∈ L, Nβ∈ L, Nγ∈ L
– L is a set containing all possible outcomes of resource

consumption of B-bit constant multipliers
– NL, the size of L depends on the implementation details of

the fixed point library
– P(Nα=x)= P(Nβ =y)= P(Nγ =z)=1/ NL where x,y,z ∈ L

• due to complex optimisation techniques applied
• assuming Nα, Nβ, Nγ are i.i.d. uniform random numbers in set L

13

Possibility of Finding Efficient Constants

• The probability of getting any Nα, Nβ, Nγ
combination is (1/ NL)3

• The probability of finding a set of constants
which halves the hardware resource is
therefore 12.5% or (1/2)3

• The probability to find 20% size reduction is
51.2% or (4/5)3

• It is quite possible to find efficient constant
combinations in the search space
 14

Efficient Fixed Point Constants

1.Possibility of finding efficient constants

2.Two approaches to scan the search space
A. minimise hardware resource utilisation
B. minimise the amount of computation

15

Scanning the search space
• Coefficients α, β and γ are flexible

– certain properties must be met
– ΔZ and Δt determines the coefficients

• Grid density can be adjusted
– ΔZ and Δt determines grid density

16

∆Z

∆t

fi, j
fi+1, j

fi+1, j+1

fi+1, j-1
α(∆t,∆Z,κ)

β(∆t,∆Z,κ)

γ(∆t,∆Z,κ)

∆Z

A
djustable

Adjustable

Simple Example

17

fi, j
fi+1, j

fi+1, j+1

fi+1, j-1

α=0.03877

β=0.8989

γ=0.06055
∆Z=0.156

fi, j
fi+1, j

fi+1, j+1

fi+1, j-1α=0.03807

β=0.9005

γ=0.05967
∆Z=0.158

Before After

Adjust ΔZ

NLUT: 533 NLUT: 335

37% reduction in NLUT

result based on flopoco p&r

Simple Example

18

R
el

at
iv

e
E

rro
r

C
oe

ffi
ci

en
ts

 V
al

ue
s

λ

γ

α
β

λ = ΔZ/ Δt

Minimising Hardware Resource Utilisation

• Constants in the form of 2E (E ∈ Z) leads to
smaller multipliers
– multipliers are implemented by shift operators in

fixed point arithmetic

• Making α, β and γ close to form 2E
– corresponding multipliers likely to be smaller
– assuming the hardware resource consumption is

related to the hamming weight of the constant

19

Minimising Hardware Resource Utilisation
• The coefficients need to meet the following

criteria:
– α+β+γ=1, α>0, β>0, γ>0
– μ(r, σ, Δt) = μ’(α, β, γ, ΔZ)

• mean, 1st moment
– Var(σ, Δt) = Var’(α, β, γ, ΔZ)

• variance, 2nd moment
– Skew = Skew’(α, β, γ, ΔZ)

• skewness, 3rd moment
– Kurt = Kurt’(α, β, γ, ΔZ)

• Kurtosis, 4th moment

20

Statistical Moments
should be equal to
EFD Moments

Minimising Hardware Resource Utilisation

• Make the EFD scheme converge
– the criteria must be met

• A minimisation routine
– search around a efficient set of constants

• (i.e. α=2E1, β=2E2, γ=2E3 or 0.25, 0.5, 0.25)

– force the criteria to be met
• first and second moments must match
• differences in third and fourth moments minimised
• grid convergence is guaranteed

21

Minimising Hardware Resource Utilisation

• Pros:
– possible to find very small constant multipliers

• hardware consumption close to the 2E multipliers

• Cons:
– has no control over Δt or ΔZ

• the EFD problem size can be unbounded
• result accuracy is not guaranteed

– requires a 2D search space (Δt, ΔZ)
• some times not possible in business

– Works under assumption
• hamming weight is related to hardware resource consumption

22

Efficient Fixed Point Constants

1.Possibility of finding efficient constants

2.Two approaches to scan the search space
A. minimise hardware resource utilisation
B. minimise the amount of computation

23

Minimising Amount of Computation

24
Relative error against Δt and λ, where λ = ΔZ/ Δt

Relative error

Δt

λ

How much computation
is actually needed?

R
el

at
iv

e
er

ro
r

Minimising Amount of Computation
• Δt is usually determined by business fact (fixed)

– i.e. if options are exercised on a daily basis, Δt=1 day

25

R
el

at
iv

e
E

rro
r

C
oe

ffi
ci

en
ts

 V
al

ue
s

λ

γ

α
β

Minimising Amount of Computation

• With Δt fixed, find a λ (i.e. ΔZ, since λ = ΔZ/ Δt)
– must meet the result accuracy requirement
– ΔZ> ΔZtree , amount of computation is reduced

• Search in [λ- ε,λ]
– ε is a small number
– find a set of coefficients with local optimal

hardware consumption
– result accuracy is guaranteed since relative error

grows with λ
26

Minimising Amount of Computation

• Pros
– amount of computation in the result EFD grid is

minimised
– Result accuracy is guaranteed
– fast search under simple search space (1D), no

minimisation routine required

• Cons
– global optimal is NOT guaranteed

27

3. Evaluation: Implementation

• Xilinx Virtex-6 XC6VLX760 FPGA, ISE 13.2
• FloPoCo library for fixed point datapath
• MPFR library for fixed point error analysis
• Nelder-Mead multivariable routine in GNU

scientific library for minimisation
• Place and route results are reported

28

Experiment Setting
• 23 bit fixed point number format is used

– with 1 bit for integer and 22 bits for fraction

• Relative error tolerance is 2E − 4
– compared to double precision result
– same level of accuracy is used in industry

• Δt is set as 1/365
– Assuming daily observation in a 365-day year

• Result compared to our previous work
– 23 bit fixed point dynamic designs – unoptimised

29

A Typical Case

30

κ ≡ (S, K, r, T, σ) = (70, 70, 0.05, 1.0, 0.3).

European option

Result from implementations is compared to
the Black Scholes formula result

P&R Result: 1000 Typical Options

31

Max=906

Max=710

22% Reduction in Upper bound

Future Work

• Use more sophisticated hardware estimation
tools for better result

• Generalise the work to support more types of
EFD schemes

• Long term: address trade-offs
– in speed, area, numerical accuracy, power and energy

efficiency
– for a variety of applications and devices

32

Summary
1. Novel optimisation for Explicit Finite Difference (EFD):

– preserves result accuracy
– reduces hardware resource consumption
– reduces number of computational steps

2. Two approaches to minimise:
– hardware resource utilisation
– amount of computation required in the algorithm

3. Evaluation: 40% reduction in area-time product
– 50%+ faster than before optimisation
– 7+ times faster than static FPGA implementation
– 5 times more energy efficient than static FPGA implementation

33

	Optimising Explicit Finite Difference Option Pricing For �Dynamic Constant Reconfiguration
	Contributions
	Background
	Background
	Background
	Background
	Background
	Two Optimisation Methods
	1. Novel Optimisation Method
	Novel Optimisation Method: Approach
	Normalising Option Coefficients
	2. Efficient Fixed Point Constants
	Possibility of Finding Efficient Constants
	Possibility of Finding Efficient Constants
	Efficient Fixed Point Constants
	Scanning the search space
	Simple Example
	Simple Example
	Minimising Hardware Resource Utilisation
	Minimising Hardware Resource Utilisation
	Minimising Hardware Resource Utilisation
	Minimising Hardware Resource Utilisation
	Efficient Fixed Point Constants
	Minimising Amount of Computation
	Minimising Amount of Computation
	Minimising Amount of Computation
	Minimising Amount of Computation
	3. Evaluation: Implementation
	Experiment Setting
	A Typical Case
	P&R Result: 1000 Typical Options
	Future Work
	Summary

