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Overview  

• Background 

• Partitioning algorithm 

• Analytical model 

• Reconfiguration scheduling 

• Results 

• Future work  

• Conclusion 
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Background: run-time reconfiguration 

• Purna and Bhatia 1999 

- temporal partitioning and data flow graph scheduling  

• Singhal and Bozorgzadeh 2006 

- floorplanning for reconfiguration 

• Bruneel, Abouelella and Stroobandt 2009 

- mapping applications to self-reconfiguring platform 

• Iskander 2010 

- accelerate design validation  

• Koch and Torresen 2011 

- run-time reconfigurable sorter for large-scale problems 
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Background: run-time reconfiguration 

• Purna and Bhatia 1999 

- temporal partitioning and data flow graph scheduling  

• Singhal and Bozorgzadeh 2006 

- floorplanning for reconfiguration 

• Bruneel, Abouelella and Stroobandt 2009 

- mapping applications to self-reconfiguring platform 

• Iskander 2010 

- accelerate design validation  

• Koch and Torresen 2011 

- run-time reconfigurable sorter for large-scale problems 

• Our focus: automate reconfigurable stencil computation 
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Contributions 

1. identify reconfiguration opportunities 

−partitioning algorithm: generate configurations based on 

variations in time dimension 

2. analyse runtime benefits for stencil computation 

−analytical model: optimise generated partitions, to fully utilise 

available resources 

3. evaluate run-time solutions 

−Scheduling algorithm: evaluate run-time benefits and 

overhead, to provide optimal run-time solution 
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Stencil Computation: Reverse Time Migration (RTM) 

Forward propagation 

Forward propagation 

Backward propagation 

correlation 

Example: Oil & Gas Application 
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1. Partitioning algorithm: functions to segments 

• segments 

−functions in same data dependency level combined as a 

segment 

−segment variations express algorithm variations in time 

dimension 
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Partitioning algorithm: segments to configurations 

• segments 

−functions in same data dependency level combined as a 

segment 

−segment variations express algorithm variations in time 

dimension 

• configurations 

−one or more segments are combined as a valid 

configuration to be executed 

−optimised configurations utilise run-time benefits 
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Partitioning algorithm: partitions 

• segments 

−functions in same data dependency level combined as a 

segment 

−segment variations express algorithm variations in time 

dimension 

• configurations 

−one or more segments are combined as a valid 

configuration to be executed 

−optimised configurations utilise run-time benefits 

• partitions 

−one or more configurations are coordinated to accomplish 

application tasks 

−optimal partition balances run-time benefits and overhead 
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Dynamic partitioning: algorithm 
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2. Analytical model: data-paths 
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Analytical model: error and resource consumption 

• fully pipelined data-paths 

• bit-width optimisation, arithmetic operation transform 

  

 
error 

resource consumption 
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Analytical model: FPGA resources  

• fully pipelined data-paths  

• bit-width optimisation, arithmetic operation transform 

 

LUTs/FFs 

DSP 
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Analytical model: FPGA resource consumption 

• fully pipelined data-paths 

• bit-width optimisation and arithmetic 

operation transformation 

• accumulating resource consumption 

DSP consumption 

LUT consumption 

FF  consumption 
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Analytical model: memory systems 

• customised memory architecture 
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Analytical Model: Memory Systems 

• customised memory architecture 

• data access blocking 
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Analytical model: memory systems 

• customised memory architecture 

• analysing resource / bandwidth requirements 

memory resource consumption 
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Analytical model: memory systems 

• customised memory architecture 

• analysing resource / bandwidth requirements 

off-chip bandwidth requirement 
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Analytical model: design scalability 

• parallel data-paths: multiple memory access 

• serial: multiple time steps 
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Analytical model: optimisation 

• Objective 

Minimise: 
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Analytical model: optimisation 

• Objective 

• Constraints 

Subject to: 

Minimise: 
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Analytical model: optimisation 

• Objective 

• Constraints 

• Overhead 

−reconfiguration time 

−data transfer time  
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3. Reconfiguration scheduling 
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Results: model performance 

• fully utilise available resources 
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Results: model performance 

• fully utilise available resources 

• model accuracy 
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Results: model performance 

• fully utilise available resources 

• model accuracy 

• approximating peak performance 
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Results: optimal reconfiguration solution 

 

 

• improved system performance  

−1.59 times faster than the best published GPU and FPGA 

results 
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Results: optimal reconfiguration solution 

 

 

• improved system performance  

−1.59 times faster than the best published GPU and FPGA 

results 

−1.45 times faster than optimized static implementation 

−1.42 times more energy efficient than the static designs 
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Future work 

• generalise design methods 

• partial reconfiguration 

• run-time scheduling 

• further applications 
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Conclusion 

• design method to exploit run-time reconfiguration 

−partitioner 

−analytical model 

−scheduler  

• improved system performance  

−1.59 times faster than the best published GPU and FPGA 

results 

−1.45 times faster than optimized static implementation 

−1.42 times more energy efficient than the static designs 


