
Exploiting Run-time Reconfiguration In

Stencil Computation

Xinyu Niu, Qiwei Jin, Wayne Luk, Qiang Liu and Oliver Pell

Dept. of Computing, School of Engineering, Imperial College London, UK

School of Electronic Information Engineering, Tianjin University, China

Maxeler Technologies, UK

2

Overview

• Background

• Partitioning algorithm

• Analytical model

• Reconfiguration scheduling

• Results

• Future work

• Conclusion

3

Background: run-time reconfiguration

• Purna and Bhatia 1999

- temporal partitioning and data flow graph scheduling

• Singhal and Bozorgzadeh 2006

- floorplanning for reconfiguration

• Bruneel, Abouelella and Stroobandt 2009

- mapping applications to self-reconfiguring platform

• Iskander 2010

- accelerate design validation

• Koch and Torresen 2011

- run-time reconfigurable sorter for large-scale problems

4

Background: run-time reconfiguration

• Purna and Bhatia 1999

- temporal partitioning and data flow graph scheduling

• Singhal and Bozorgzadeh 2006

- floorplanning for reconfiguration

• Bruneel, Abouelella and Stroobandt 2009

- mapping applications to self-reconfiguring platform

• Iskander 2010

- accelerate design validation

• Koch and Torresen 2011

- run-time reconfigurable sorter for large-scale problems

• Our focus: automate reconfigurable stencil computation

5

Contributions

1. identify reconfiguration opportunities

−partitioning algorithm: generate configurations based on

variations in time dimension

2. analyse runtime benefits for stencil computation

−analytical model: optimise generated partitions, to fully utilise

available resources

3. evaluate run-time solutions

−Scheduling algorithm: evaluate run-time benefits and

overhead, to provide optimal run-time solution

6

Stencil Computation: Reverse Time Migration (RTM)

Forward propagation

Forward propagation

Backward propagation

correlation

Example: Oil & Gas Application

7

1. Partitioning algorithm: functions to segments

• segments

−functions in same data dependency level combined as a

segment

−segment variations express algorithm variations in time

dimension

8

Partitioning algorithm: segments to configurations

• segments

−functions in same data dependency level combined as a

segment

−segment variations express algorithm variations in time

dimension

• configurations

−one or more segments are combined as a valid

configuration to be executed

−optimised configurations utilise run-time benefits

9

Partitioning algorithm: partitions

• segments

−functions in same data dependency level combined as a

segment

−segment variations express algorithm variations in time

dimension

• configurations

−one or more segments are combined as a valid

configuration to be executed

−optimised configurations utilise run-time benefits

• partitions

−one or more configurations are coordinated to accomplish

application tasks

−optimal partition balances run-time benefits and overhead

10

Dynamic partitioning: algorithm

11

2. Analytical model: data-paths

12

Analytical model: error and resource consumption

• fully pipelined data-paths

• bit-width optimisation, arithmetic operation transform

error

resource consumption

13

Analytical model: FPGA resources

• fully pipelined data-paths

• bit-width optimisation, arithmetic operation transform

LUTs/FFs

DSP

14

Analytical model: FPGA resource consumption

• fully pipelined data-paths

• bit-width optimisation and arithmetic

operation transformation

• accumulating resource consumption

DSP consumption

LUT consumption

FF consumption

15

Analytical model: memory systems

• customised memory architecture

16

Analytical Model: Memory Systems

• customised memory architecture

• data access blocking

17

Analytical model: memory systems

• customised memory architecture

• analysing resource / bandwidth requirements

memory resource consumption

18

Analytical model: memory systems

• customised memory architecture

• analysing resource / bandwidth requirements

off-chip bandwidth requirement

19

Analytical model: design scalability

• parallel data-paths: multiple memory access

• serial: multiple time steps

20

Analytical model: optimisation

• Objective

Minimise:

21

Analytical model: optimisation

• Objective

• Constraints

Subject to:

Minimise:

22

Analytical model: optimisation

• Objective

• Constraints

• Overhead

−reconfiguration time

−data transfer time

23

3. Reconfiguration scheduling

24

Results: model performance

• fully utilise available resources

25

Results: model performance

• fully utilise available resources

• model accuracy

26

Results: model performance

• fully utilise available resources

• model accuracy

• approximating peak performance

27

Results: optimal reconfiguration solution

• improved system performance

−1.59 times faster than the best published GPU and FPGA

results

28

Results: optimal reconfiguration solution

• improved system performance

−1.59 times faster than the best published GPU and FPGA

results

−1.45 times faster than optimized static implementation

29

Results: optimal reconfiguration solution

• improved system performance

−1.59 times faster than the best published GPU and FPGA

results

−1.45 times faster than optimized static implementation

−1.42 times more energy efficient than the static designs

30

Future work

• generalise design methods

• partial reconfiguration

• run-time scheduling

• further applications

31

Conclusion

• design method to exploit run-time reconfiguration

−partitioner

−analytical model

−scheduler

• improved system performance

−1.59 times faster than the best published GPU and FPGA

results

−1.45 times faster than optimized static implementation

−1.42 times more energy efficient than the static designs

