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Introduction

+ What is CAaSH?

* Functional Language and Compiler for Concurrent Digital
Hardware Design

* Motivation?
+ Evaluate CAaSH and design method on complex application
* Why a particle filter?

* Covers important aspects of digital hardware design: massive
parallelism, teedback loop and data dependent processing.
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Background CAaSH

* CAaSH
* A functional language and compiler for digital hardware design
* On the lowest level, everything is a Mealy machine  f(s,i) = (s’,0)

* A CAaSH description is purely structural i.e. all operations are
performed in a single clock cycle

* Simulation is cycle accurate

Thursday, September 13, 12



Background

S s'

a ‘
—p out
b

-

Thursday, September 13, 12



Background




B aCkg Irournl d State estimation

+* State estimation

* Determine p(xx | zi) recursively with noise

* State variables: position, speed, angle, ...

* Applications: tracking in radar and video

* Requirements for estimator

* System dynamics noise

+ Measurement function System T >t Estimator
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Background

Particle Filter

* Monte Carlo approximation of p(xx | zx) represented by concentration

of points (particles)

* Applicable to non-linear, non gaussian systems (tracking, robotics,..)

* Parameterizable in and N, Fsys(x) and Feas(x,m)
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Background

Particle Filter

* Prediction

+* Predict next state based on current
E sys(x) — X’

* Update

* Assign weights to particles based
on measurement Feqs(x,m) = @

* Normalize such that ) w®@=1

* Resample
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B aCkg Irournl d Particle Filter
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* Prediction

| Predict
A4
* Predict next state based on current Measurement == Update )
I3 sys(x) = - =
Normalize
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* Assign weights to particles based
on measurement Feqs(x,m) = @

* Normalize such that ) w®@=1

* Resample
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B aCkg Irournl d Particle Filter
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* Assign weights to particles based
on measurement Feqs(x,m) = @

* Normalize such that ) w®@=1
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B aCkg Irournl d Particle Filter

* Predict next state based on current Measurement —  Update
E sys(x) — 4
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* Assign weights to particles based
on measurement Feqs(x,m) = @

* Normalize such that ) w®@=1

* Resample
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B aCkg POUHd Particle Filter

* Prediction

p :
}
| Predict
* Predict next state based on current Measurement == Update )
E sys(x) — X’ - N
Normalize
*
* Update " | .
Resample
ﬁ
. . . L )
* Assign weights to particles based
on measurement Fmeas(x,m) — (U O 0 0O O XO(Z) O O @)
Y

* Normalize such that ) w®@=1

* Resample
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B aCkg I‘()Uﬂd Mathematical formulation of Particle Filter

+* Prediction

# System dynamics function

* Update
* Measurement function
* Normalize

* Resample

j, ~ P(Tk|Tp—1)
ZI?I(;) — f(az,(;zl,uk)
W = p(al)
W) = g(a}? for i=1...N
ot =il i et = .
. (4)
o) = i for =11
anl w(n)
(e N o '
{i,(c ),:'f:,i o 5{:,2 )} =" replicate(w,g), )
n=1
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B aCkg I'()Uﬂd Simple tracking application
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B aCkg I'()Uﬂd Simple tracking application
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B aCkg I'()Uﬂd Simple tracking application
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B aCkg POUHd Simple tracking application
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Implementing the particle filter

* Design method
+ Math to Haskell

+ Haskell to CAaSH

12




Design method

* First step
* Reformulate the mathematics of Particle filtering into plain Haskell
* Second step

* Apply small modifications to Haskell code such that it is accepted
by the CAaSH compiler

Functional description

[ Haskell '—>[ ChaSH

Mathematics

‘ Hardware l

Simulation/behavioral verification 13
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Math to Haskell Predictio

* Apply the state space model to all particles g7 e (%@1,%)
* All operations are performed independently  f (ﬁ;(;") Uk) =z +w

* Corresponding higher order function is zipWith
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Math to Haskell Notrli i

* Determine sum of weights and apply to all particles

+ Corresponding higher order functions are foldl and zipWith

. ()
O

y:g—l w(m)

e
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Haskell to CAaSH Predicii

+ Translate lists to Vectors
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Haskell to CAaSH Predicii

+ Translate lists to Vectors
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H&Skell tO CA&SH Normalize

+ Translate lists to Vectors

+ Use fixed point representation for weights
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H&Skell tO CA&SH Normalize

+ Translate lists to Vectors

+ Use fixed point representation for weights
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HaSkell tO CA&SH Normalize

+ Translate lists to Vectors

+ Use fixed point representation for weights
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Haskell to CAaSH

Normalize

+ Translate lists to Vectors

+ Use fixed point representation for weights

T —
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Results

+ Parallel particle filter with 32 particles
synthesized for FPGA

* Area = about 40k LUTs

* PF can be synthesized but is slow

* Resampling step is bottleneck in both
area and clockfrequency

* For larges PFs, we need a trade oft
between area and execution time ® Predict

@® Normalize @® Resample
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Conclusions

* A completely parallel Particle Filter has been implemented

* Higher order functions are a natural way to to reason about structure
in both the mathematical formulation and hardware

* Haskell code needs only small modifications before it is accepted by
the CAaSH compiler

* Fully parallel resampling is a bottleneck in both area and clock
frequency

1]
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Future Work

* Extend particle filter to more particles and more complex tracking

* Develop area vs time time trade off based on functional description
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(Questions !
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