A two step hardware design
method using CAaSH

Rinse Wester, Christiaan Baaij, Jan Kuper

University of Twente, Enschede

August 27,2012

Contents

* Introduction

* Background

* Designing method applied to particle filter
* Results

* Conclusions & Future Work

Thursday, September 13, 12

Introduction

+ What is CAaSH?

* Functional Language and Compiler for Concurrent Digital
Hardware Design

* Motivation?
+ Evaluate CAaSH and design method on complex application
* Why a particle filter?

* Covers important aspects of digital hardware design: massive
parallelism, teedback loop and data dependent processing.

Thursday, September 13, 12

Background CAaSH

* CAaSH
* A functional language and compiler for digital hardware design
* On the lowest level, everything is a Mealy machine f(s,i) = (s’,0)

* A CAaSH description is purely structural i.e. all operations are
performed in a single clock cycle

* Simulation is cycle accurate

Thursday, September 13, 12

Background

S s'

a ‘
—p out
b

-

Thursday, September 13, 12

Background

B aCkg Irournl d State estimation

+* State estimation

* Determine p(xx | zi) recursively with noise

* State variables: position, speed, angle, ...

* Applications: tracking in radar and video

* Requirements for estimator

* System dynamics noise

+ Measurement function System T >t Estimator

Thursday, September 13, 12

Background

Particle Filter

* Monte Carlo approximation of p(xx | zx) represented by concentration

of points (particles)

* Applicable to non-linear, non gaussian systems (tracking, robotics,..)

* Parameterizable in and N, Fsys(x) and Feas(x,m)

025,

0.25

0.2

0.15

0.1

0.05

Thursday, September 13, 12

Background

Particle Filter

* Prediction

+* Predict next state based on current
E sys(x) — X’

* Update

* Assign weights to particles based
on measurement Feqs(x,m) = @

* Normalize such that) w®@=1

* Resample

Measurement —

Predict

Update

il

4 N\
Normalize

hF—J

4)
Resample

—

Thursday, September 13, 12

B aCkg Irournl d Particle Filter

¥

J

* Prediction

| Predict
A4
* Predict next state based on current Measurement == Update)
I3 sys(x) = - =
Normalize
* Update 0)
Resample

—

* Assign weights to particles based
on measurement Feqs(x,m) = @

* Normalize such that) w®@=1

* Resample

Thursday, September 13, 12

B aCkg Irournl d Particle Filter

TR v ’
* Prediction [Prod)
redict

* Predict next state based on current Measurement— Update)

E sys(x) — 4 g ! ~
Normalize

* Update 0)
Resample

—

* Assign weights to particles based
on measurement Feqs(x,m) = @

* Normalize such that) w®@=1

* Resample

Thursday, September 13, 12

B aCkg Irournl d Particle Filter

* Predict next state based on current Measurement — Update
E sys(x) — 4

o 4 |
+ Prediction [. A
Predict
;\

p ' N
Normalize

ﬁ
< Update r : N

Resample

—

* Assign weights to particles based
on measurement Feqs(x,m) = @

* Normalize such that) w®@=1

* Resample

Thursday, September 13, 12

B aCkg POUHd Particle Filter

* Prediction

p :
}
| Predict
* Predict next state based on current Measurement == Update)
E sys(x) — X’ - N
Normalize
*
* Update " | .
Resample
ﬁ
. . . L)
* Assign weights to particles based
on measurement Fmeas(x,m) — (U O 0 0O O XO(Z) O O @)
Y

* Normalize such that) w®@=1

* Resample

Thursday, September 13, 12

B aCkg I‘()Uﬂd Mathematical formulation of Particle Filter

+* Prediction

System dynamics function

* Update
* Measurement function
* Normalize

* Resample

j, ~ P(Tk|Tp—1)
ZI?I(;) — f(az,(;zl,uk)
W = p(al)
W) = g(a}? for i=1...N
ot =il i et = .
. (4)
o) = i for =11
anl w(n)
(e N o '
{i,(c),:'f:,i o 5{:,2)} =" replicate(w,g),)
n=1

10

Thursday, September 13, 12

B aCkg I'()Uﬂd Simple tracking application

200

100

100 200 300

11

Thursday, September 13, 12

B aCkg I'()Uﬂd Simple tracking application

Tracking a square on a dark
background

200

100

100 200 300

11

Thursday, September 13, 12

B aCkg I'()Uﬂd Simple tracking application

Tracking a square on a dark
background

200}
Particle: X% = <x,y,w>

100

100 200 300

11

Thursday, September 13, 12

B aCkg I'()Uﬂd Simple tracking application

Tracking a square on a dark
background

200}
Particle: X% = <x,y,w>

System dynamics

100

100 200 300

11

Thursday, September 13, 12

B aCkg I'()Uﬂd Simple tracking application

Tracking a square on a dark
background

200}
Particle: X% = <x,y,w>

System dynamics

(ol]/,) = (x + Oy, Y+ (Sy)
where 6., 0, ~ U(-a,a)

100

100 200 300

11

Thursday, September 13, 12

B aCkg I'()Uﬂd Simple tracking application

Tracking a square on a dark
background

200}
Particle: X% = <x,y,w>

System dynamics

(ol]/,) = (x + Oy, Y+ (Sy)
where 6., 0, ~ U(-a,a)

100

Measurement function

100 200 300

11

Thursday, September 13, 12

B aCkg I'()Uﬂd Simple tracking application

Tracking a square on a dark
background

200}
Particle: X% = <x,y,w>

System dynamics

(ol]/,) = (x + Oy, Y+ (Sy)
where 6., 0, ~ U(-a,a)

100

Measurement function

100 200 300

w=1/(1+ (255-px1)?)

11

Thursday, September 13, 12

B aCkg POUHd Simple tracking application

Tracking a square on a dark
background

200}
Particle: X% = <x,y,w>

System dynamics

(ol]/,) = (x + Oy, Y+ (Sy)
where 6., 0, ~ U(-a,a)

100

Measurement function

100 200 300

w=1/(1+ (255-px1)?)

11

Thursday, September 13, 12

Implementing the particle filter

* Design method
+ Math to Haskell

+ Haskell to CAaSH

12

Design method

* First step
* Reformulate the mathematics of Particle filtering into plain Haskell
* Second step

* Apply small modifications to Haskell code such that it is accepted
by the CAaSH compiler

Functional description

[Haskell '—>[ChaSH

Mathematics

‘ Hardware l

Simulation/behavioral verification 13

Thursday, September 13, 12

Math to Haskell Predictio

* Apply the state space model to all particles g7 e (%@1,%)
* All operations are performed independently f (ﬁ;(;") Uk) =z +w

* Corresponding higher order function is zipWith

e -

B —
D — —8
1

4

Thursday, September 13, 12

Math to Haskell Notrli i

* Determine sum of weights and apply to all particles

+ Corresponding higher order functions are foldl and zipWith

. ()
O

y:g—l w(m)

e

15

Thursday, September 13, 12

Haskell to CAaSH Predicii

+ Translate lists to Vectors

16

Haskell to CAaSH Predicii

+ Translate lists to Vectors

16

H&Skell tO CA&SH Normalize

+ Translate lists to Vectors

+ Use fixed point representation for weights

——S

T —

Thursday, September 13, 12

H&Skell tO CA&SH Normalize

+ Translate lists to Vectors

+ Use fixed point representation for weights

B — e ———
17

— -

Thursday, September 13, 12

HaSkell tO CA&SH Normalize

+ Translate lists to Vectors

+ Use fixed point representation for weights

R —

e ———

17
R — e ————

Thursday, September 13, 12

Haskell to CAaSH

Normalize

+ Translate lists to Vectors

+ Use fixed point representation for weights

T —

17

Thursday, September 13, 12

Results

+ Parallel particle filter with 32 particles
synthesized for FPGA

* Area = about 40k LUTs

* PF can be synthesized but is slow

* Resampling step is bottleneck in both
area and clockfrequency

* For larges PFs, we need a trade oft
between area and execution time ® Predict

@® Normalize @® Resample

Thursday, September 13, 12

Conclusions

* A completely parallel Particle Filter has been implemented

* Higher order functions are a natural way to to reason about structure
in both the mathematical formulation and hardware

* Haskell code needs only small modifications before it is accepted by
the CAaSH compiler

* Fully parallel resampling is a bottleneck in both area and clock
frequency

1]

Thursday, September 13, 12

Future Work

* Extend particle filter to more particles and more complex tracking

* Develop area vs time time trade off based on functional description

20

Thursday, September 13, 12

(Questions !

24

Thursday, September 13, 12

