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Introduction

✤ What is C𝝀aSH?

✤ Functional Language and Compiler for Concurrent Digital 
Hardware Design

✤ Motivation?

✤ Evaluate C𝝀aSH and design method on complex application

✤ Why a particle filter?

✤ Covers important aspects of digital hardware design: massive 
parallelism, feedback loop and data dependent processing.
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Background

✤ C!aSH

✤ A functional language and compiler for digital hardware design

✤ On the lowest level, everything is a Mealy machine      f(s,i) = (s’,o)

✤ A C!aSH description is purely structural i.e. all operations are 
performed in a single clock cycle

✤ Simulation is cycle accurate
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Figure 2. Multiply Accumulate structure

The fir example of Listing 2 accepts an additional argument cs which contains a vector
of filter coefficients. The registers of the filter, the input and output are called us , in and out

respectively. The new state of the registers us 0 is the original state us with the input shifted in
one position using the +� operator. vzipWith is used in the second line to pairwise multiply
the coefficients cs with the contents of the registers us . Finally, the last line shows the use of
vfoldl which accepts + as functional argument and therefore adds all ws together. Note that
cs (the filter coefficients) are parameters for the fir function.

Listing 2 Higher order functions in a FIR filter described using C�aSH.

fir cs (State us) inp = (State us

0
, out)

where
us

0
= inp +� us

ws = vzipWith (⇤) us cs

out = vfoldl (+) 0 ws

Important to note is that the description in the where clause only expresses data depen-
dencies and no sequential ordering. Therefore, the description is implicitly parallel and there
is no need for special notation. Also, vzipWith is implicitly parallel, it applies a function
pairwise to the elements of the two lists us and cs . The schematic corresponding with Listing
2 is shown in Figure 3.
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Figure 3. FIR filter structure

2. Specification of APERTIF Polyphase Filter Bank

As explained in Section 1.1, the Polyphase Filter Bank consists of two parts: the Polyphase
Filter and the FFT pipeline. In the following two sections, we present the specification of the
Polyphase Filter and FFT pipeline. First, the specification is given in Haskell which is then
slightly changed such that it is accepted by the C�aSH compiler. These changes are necessary
since the C�aSH compiler does not support floating point numbers and a proper fixed point
representation for numbers is needed.
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dramatically compared to a fully parallel implementation. All filters can therefore be merged
into a single filter alternating between the different sets of coefficients and registers. This also
means that for each sample consumed by the filters also one sample will be sent to the FFT.

The FFT splits the signal into M distinct frequency components which are combined for
all antennas in the beamformer. The architecture of the FFT is a pipeline as described in [10].
From the size and radix of the FFT, it follows that log4(1024) = 5 stages are required.

The whole Polyphase Filter Bank design should fit on a single Altera Stratix IV FPGA
(EP4SGX230KF40C2). Data from the antenna arrives in the FPGA using high speed serial
interconnect producing data at 800 MS/s. The desired clock frequency for the filterbank is
200 MHz. Therefore, the structure has to be parallelized by a factor of p = 800/200 = 4 in
order to meet the throughput.

1.2. C�aSH

C�aSH [1] is a new functional hardware description language based on Haskell. C�aSH is
both a simulation environment and a compiler . The language accepted by the C�aSH com-
piler (a subset of Haskell that can be translated to hardware) supports advanced features such
as poly-morphism, higher-order functions, pattern matching and type derivation. Polymor-
phism and higher-order functions (functions that have functions as argument or result) allow
circuit designers to describe parameterizable circuits in a natural way. Especially Higher Or-
der functions are a powerful abstraction since they allow for reasoning about structure and
parallelism of the hardware.

C�aSH is a purely synchronous and cycle accurate hardware description language where
everything is, on the lowest level, expressed as a Mealy machine. Therefore, every output
and new state is a function of the input combined with the current state. Since every C�aSH
description is also a valid Haskell program, simulation comes for free. This combination
results in a fast and cycle accurate hardware simulator.

Besides simulating hardware, C�aSH is also able to translate the description to VHDL.
For simulation, C�aSH accepts plain Haskell but for translation to VHDL this is limited to
descriptions without general recursion and lists (the length may change during runtime).

Listing 1 shows a simple example, a multiply accumulate, written in C�aSH. Every func-
tion in C�aSH is formatted as shown in Listing 1. First, the name of the function to be defined
is given (mac) followed by the current state (s) and the inputs (a, b). These are arguments
of the the function mac and separated by spaces instead of commas. The result consists of
the new state s

0 using the State keyword and the output out . Finally, all calculations are
performed, combinatorially, in the where clause.

Listing 1 Multiply Accumulate example in C�aSH.

mac (State s) (a, b) = (State s

0
, out)

where
s

0
= s + a ⇤ b

out = s

0

The Hardware corresponding with Listing 1 is shown in Figure 2.
As mentioned before, C�aSH supports an abstraction mechanism called higher order

functions, which are very useful to describe structure and parallelism. Higher order functions
are functions that can accept functions as argument or return a function as a result which
is particularly useful for describing structure. Listing 2 shows a description of a FIR filter
utilizing the higher order functions vzipWith and vfoldl (the prefix ’v’ refers to vector i.e. a
list of fixed length).
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Background

✤ State estimation

✤ Determine p(xk|zk) recursively with noise

✤ State variables: position, speed, angle, ...

✤ Applications: tracking in radar and video

✤ Requirements for estimator

✤ System dynamics

✤ Measurement function
7
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Background

✤ Monte Carlo approximation of p(xk|zk) represented by concentration 
of points (particles)

✤ Applicable to non-linear, non gaussian systems (tracking, robotics,..)

✤ Parameterizable in and N,  Fsys(x) and Fmeas(x,m)

8
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acteristics of our parallel implementation in Section 4, and
end with conclusions and future work in Section 5.

1.1. Related work

The use of Haskell to design hardware is not new, the work
by Gill and Farmer [3] uses Kansas Lava, a Domain Specific
Language (DSL) embedded in Haskell, to implement an ef-
ficient FPGA implementation of an LPDC decoder. While
their work focuses on applying many types of transforma-
tions on the reference Haskell specification to get an effi-
cient implementation, we focus on trying to stay as close to
the Haskell reference implementation as possible.

Much work on parallel particle filters using FPGAs has
been done at Stony Brook University [4], covering generic
architectures for different types of particle filters and tech-
niques to increase the performance of resampling. In terms
of parallelization, their approach is applying changes to the
architecture to increase the performance while the approach
taken is this paper is utilizing as much parallelism in the
mathematical description as possible.

The need for abstraction in hardware design has led to
a technique called high-level synthesis [5]. High-level syn-
thesis takes a high-level language (usually C) and translates
this to a hardware description language like VHDL or Ver-
ilog. The main difference between high-level synthesis and
the approach taken in this paper is that our method uses a
more mathematical oriented language (Haskell) instead of
the inherently sequential language C.

The particle filter described in this paper has not been
implemented in VHDL. However, based on [6], it is ex-
pected that the resulting hardware is very similar. In [6], a
dataflow processor has been designed using both VHDL and
C�aSH based on a single specification and the same design
decisions were made.

Although many particle filters have been built for FPGA,
it is very hard to compare them to the results presented in
this paper. This is due to the fact that the particle filter de-
scribed in this paper is fully parallel (all particles are pro-
cessed in single cycle) while other particle filters usually
process a single particle per cycle resulting in very differ-
ent hardware.

2. BACKGROUND

The background information is divided into two subsections.
First, Subsection 2.1 introduces (the mathematical structure
of) particle filters. The last subsection (Subsection 2.2), in-
troduces the C�aSH HDL including an example.

2.1. Particle Filtering

Particle filtering is a Bayesian filtering technique to find the
state variables of a particular system based on noisy mea-

surements [7]. For each measurement, the belief of the state
is recursively updated resulting in a posterior belief about
the state of the system. Since these measurements contain
noise, the resulting belief will be in the form of a Probabil-
ity Density Function (PDF). Several examples of these mea-
surements are frames from video streams and range-Doppler
images from radar. Analytically finding the posterior is of-
ten mathematically intractable (unable to solve the integrals)
which is why approximation methods are used. A particle
filter is a Monte Carlo approach that repeatedly generates
random samples and eliminates them partially according to
a selection function. Mathematically, the filtering problem
is to find the PDF of the state vector xk given the measure-
ment zk (k is the iteration number of the filter):

p(xk|zk) (1)

In a particle filter, this PDF is approximated by a col-
lection of particles x

(i)
k where i = 1 . . . N is the index of

a particle. A higher density of particles represents a higher
probability in the continuous state space. Figure 2 shows
both the continuous PDF and a particle filter approximation.

Fig. 2. Continuous PDF and particle filter approximation

A commonly used type of particle filter is the Sequential
Importance Resampling Filter (SIRF) which consists of four
steps: prediction, update, normalization and resampling [8].
Each time a measurement arrives (the sequential part), these
four steps are performed and alter the particles for the next
measurement forming the feedback loop shown in Figure 3.

Predict

Update

Normalize

Resample

Measurement

Fig. 3. Structure of particle filter
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Background

✤ Prediction

✤ Predict next state based on current 
Fsys(x) → x’

✤ Update

✤ Assign weights to particles based 
on measurement Fmeas(x,m) → ω

✤ Normalize such that ∑ ω(i)=1

✤ Resample
9
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ten mathematically intractable (unable to solve the integrals)
which is why approximation methods are used. A particle
filter is a Monte Carlo approach that repeatedly generates
random samples and eliminates them partially according to
a selection function. Mathematically, the filtering problem
is to find the PDF of the state vector xk given the measure-
ment zk (k is the iteration number of the filter):

p(xk|zk) (1)

In a particle filter, this PDF is approximated by a col-
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k where i = 1 . . . N is the index of

a particle. A higher density of particles represents a higher
probability in the continuous state space. Figure 2 shows
both the continuous PDF and a particle filter approximation.
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A commonly used type of particle filter is the Sequential
Importance Resampling Filter (SIRF) which consists of four
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Each time a measurement arrives (the sequential part), these
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acteristics of our parallel implementation in Section 4, and
end with conclusions and future work in Section 5.
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Mathematical formulation of Particle Filter

2.1.1. Prediction

During prediction, the next state is derived from the current
state using the known dynamics of the system. Mathemat-
ically this comes down to evaluating Equation 2 which can
be read as ”draw particles from the PDF enforced by the
system dynamics” (where ⇠ is the sampling operator):

x

(i)
k ⇠ p(xk|xk�1) (2)

Drawing particles from this distribution is performed by
evaluating the System Dynamics function f for all particles,
x

(i)
k = f(x

(i)
k�1, uk). uk is noise sampled from some proba-

bility distribution, not necessarily a Gaussian distribution.

2.1.2. Update

When a new prediction has been made, a measurement is
used to update this prediction during the update step. In
this step, weights !(i)

k are assigned to all particles represent-
ing the importance of a particular particle. Mathematically
this is formulated in Equation 3. Note that determining the
weights looks like an unconditional PDF but it is actually
deterministic (expressed with =):

!

(i)
k = p(zk|x(i)

k ) (3)

The generic mathematical formulation of the update step
is shown in (3). To find the actual weights, a likelihood func-
tion g is needed. This function returns, given a particle x

(i)
k ,

a single measurement zk and noise sample vk, a weight !(i)
k

for each particle x

(i)
k :

!

(i)
k = g(x

(i)
k , zk, vk), for i = 1 . . . N (4)

2.1.3. Normalization

The integral of any real PDF should be one, similarly this
should also hold for the sum of all the weights. This is real-
ized in the normalization step where every new weight !̃(i)

is found by:

!̃

(i)
=

!

(i)

tot!

for i = 1 . . . N

where tot! =

NX

n=1

!

(n) (5)

2.1.4. Resampling

The last step performed in a particle filter iteration is the
resampling step, which is needed to prevent degeneracy of
weights [8]. Particles are replicated 0,1 or more times ac-
cording to their weight !̃(i), while keeping the total number

of particles constant. Mathematically, the resampling pro-
cess is selecting particles as formulated in (6):

p

⇣
x̃

(i)
k = x

(i)
k

⌘
= !̃

(i)
k for i = 1 . . . N (6)

The probability that a particle x

(i)
k is replicated (the par-

ticle after resampling is denoted as x̃(i)
k ) proportionally to its

weight !̃(i)
k is expressed in (6). Figure 4 shows the process

of resampling, as expressed in (6), graphically.

Fig. 4. Graphical representation of resampling

As shown in Figure 4, particles with a low weight, those
particles have a low !̃

(i)
k , are discarded (x) while particles

with a high weight are replicated (o). Resampling is highly
data dependent which is challenging for a parallel hardware
implementation [9].

There exist several techniques to implement resampling
[10], of which systematic resampling is commonly used. In
short, Systematic Resampling replicates particles according
to the amount of fixed intervals 1

N are within the range of
a single weight given a random offset 0 < u0 <

1
N . The

resampling technique used in this paper is called Residual
Systematic Resampling, a modified version of Systematic
Resampling but mathematically equivalent [9].

Residual Systematic Resampling consists of two steps:
first the replication factor is determined based on the weight
of a particle, followed by the actual replication of particles.
Equation 7 gives an expression to determine the replication
factor ri for a single weight !(i).

ri = b(!(i) � ui�1) ⇤Nc+ 1

ui = ui�1 +
ri

N

� !

(i)

for i = 1 . . . N and u0 ⇠ U(0, 1

N

) (7)

Figure 5 shows a graphical representation of RSR ex-
pressed in (7). Basically the replication factor is determined
by the amount of arrows in the range of a weight. The ran-
domization in resampling is implemented by the random off-
set u0 sampled from the uniform distribution (U ).
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!̃(i)
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n=1 !
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Fig. 5. Graphical representation of Residual Systematic Re-
sampling

When all replication factors ri have been found, the ac-
tual replication of particles can be performed. During repli-
cation, every particle x

(i)
k is replicated ri times and the re-

sulting sets are merged into a single set of new particles x̃(i)
k .

The mathematical formulation of replication using the con-
cat operator (k) is shown in (8).

{x̃(1)
k , x̃

(2)
k . . . x̃

(N)
k } =

N

k
n=1

replicate(x

(i)
k , ri) (8)

Since the replication of particles is highly dependent on
the replication factor ri, the fully parallel hardware imple-
mentation of resampling is expected to be the most expen-
sive component.

2.2. C�aSH

C�aSH [2] is a functional HDL, whose descriptions are trans-
lated to synthesizable VHDL by the C�aSH compiler. The
C�aSH language has many advanced features such as poly-
morphism, higher-order functions, pattern matching and type
derivation. Polymorphism and higher-order functions (func-
tions that have functions as argument or result) allow circuit
designers to describe parameterizable circuits in a natural
way.

C�aSH is a synchronous HDL where, on the lowest level,
everything is expressed as a Mealy machine i.e. every output
and new state is therefore a function of the current state and
input. Listing 1 shows an example of a discrete integrator
expressed in C�aSH.

Listing 1 Integrator example in C�aSH.

integrator (State s) inp = (State s

0
, out)

where
s

0
= s + inp

out = s

0

All hardware components described using C�aSH have
a structure as expressed in Listing 1. In order to distin-
guish between inputs for the component and data coming
from registers, a keyword State is used. Every variable pre-
ceded by State will be translated to a register by the C�aSH

compiler. In the integrator example of Listing 1, the first
occurrence of state s is the current state (the output of the
registers) while the second occurrence s

0 is the new state of
the register (the input). Note that, in Haskell, arguments are
generally written without brackets.

Even though types are very important in Haskell, we
chose not to display these in the listings as this paper is about
the structural correspondence between the mathematical for-
mulation and the resulting hardware.

Every C�aSH description is also a valid Haskell pro-
gram. This means that C�aSH descriptions can be simulated
using a Haskell compiler or interpreter such as GHC [11].
Although every C�aSH design is a valid Haskell program,
the reverse relation does not hold. Concepts such as recur-
sive function definitions and recursive datatypes are for ex-
ample supported in Haskell, but not (yet) in C�aSH.

3. DESIGN METHOD

The design method consists of two steps. First, the math-
ematical definition of particle filtering is reformulated to
Haskell, while trying to preserve the original semantics of
the equations. The second step is to perform minor changes
on the Haskell description such that C�aSH can be used for
translation to VHDL.

The following two sections describe how the two step
method is applied to the simple particle filter described in
[12].

3.1. Math to Haskell

To complete the mathematical specification as given in the
background section, a state space model f and a likelihood
function g still have to be defined. The application is a sim-
ple tracking particle filter for tracking a white square on a
dark background. Since tracking the square results in a PDF
representation of the position, each particle represents a pos-
sible position of the square. A single particle can be repre-
sented using a tuple with a position x, y and weight ! as
(x, y,!).

As a state space model, we use a uniform movement in
an area of 32 ⇥ 32 pixels (U(�16, 16)) resulting in the fol-
lowing expression for f .

f

⇣
x

(i)
k , uk

⌘
= x

(i)
k + uk

where uk = h�x, �yi ! �x, �y ⇠ U(�16, 16) (9)

Weight assignment is done by the likelihood function g

based only on the color of the pixel located at the position
x, y from a single particle. Particles positioned inside the
square should get a high weight while particles outside a low
weight. This is implemented by finding the color distance as
expressed in (10):
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Design method

✤ First step

✤ Reformulate the mathematics of Particle filtering into plain Haskell

✤ Second step

✤ Apply small modifications to Haskell code such that it is accepted 
by the C𝝀aSH compiler

Functional description

Mathematics Haskell C!aSH Hardware

Simulation/behavioral verification 13
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Math to Haskell

✤ Apply the state space model to all particles

✤ All operations are performed independently

✤ Corresponding higher order function is zipWith

Prediction

14

2.1.1. Prediction

During prediction, the next state is derived from the current
state using the known dynamics of the system. Mathemat-
ically this comes down to evaluating Equation 2 which can
be read as ”draw particles from the PDF enforced by the
system dynamics” (where ⇠ is the sampling operator):

x

(i)
k ⇠ p(xk|xk�1) (2)

Drawing particles from this distribution is performed by
evaluating the System Dynamics function f for all particles,
x

(i)
k = f(x

(i)
k�1, uk). uk is noise sampled from some proba-

bility distribution, not necessarily a Gaussian distribution.

2.1.2. Update

When a new prediction has been made, a measurement is
used to update this prediction during the update step. In
this step, weights !(i)

k are assigned to all particles represent-
ing the importance of a particular particle. Mathematically
this is formulated in Equation 3. Note that determining the
weights looks like an unconditional PDF but it is actually
deterministic (expressed with =):

!

(i)
k = p(zk|x(i)

k ) (3)

The generic mathematical formulation of the update step
is shown in (3). To find the actual weights, a likelihood func-
tion g is needed. This function returns, given a particle x

(i)
k ,

a single measurement zk and noise sample vk, a weight !(i)
k

for each particle x

(i)
k :

!

(i)
k = g(x

(i)
k , zk, vk), for i = 1 . . . N (4)

2.1.3. Normalization

The integral of any real PDF should be one, similarly this
should also hold for the sum of all the weights. This is real-
ized in the normalization step where every new weight !̃(i)

is found by:

!̃

(i)
=

!

(i)

tot!

for i = 1 . . . N

where tot! =

NX

n=1

!

(n) (5)

2.1.4. Resampling

The last step performed in a particle filter iteration is the
resampling step, which is needed to prevent degeneracy of
weights [8]. Particles are replicated 0,1 or more times ac-
cording to their weight !̃(i), while keeping the total number

of particles constant. Mathematically, the resampling pro-
cess is selecting particles as formulated in (6):

p

⇣
x̃

(i)
k = x

(i)
k

⌘
= !̃

(i)
k for i = 1 . . . N (6)

The probability that a particle x

(i)
k is replicated (the par-

ticle after resampling is denoted as x̃(i)
k ) proportionally to its

weight !̃(i)
k is expressed in (6). Figure 4 shows the process

of resampling, as expressed in (6), graphically.

Fig. 4. Graphical representation of resampling

As shown in Figure 4, particles with a low weight, those
particles have a low !̃

(i)
k , are discarded (x) while particles

with a high weight are replicated (o). Resampling is highly
data dependent which is challenging for a parallel hardware
implementation [9].

There exist several techniques to implement resampling
[10], of which systematic resampling is commonly used. In
short, Systematic Resampling replicates particles according
to the amount of fixed intervals 1

N are within the range of
a single weight given a random offset 0 < u0 <

1
N . The

resampling technique used in this paper is called Residual
Systematic Resampling, a modified version of Systematic
Resampling but mathematically equivalent [9].

Residual Systematic Resampling consists of two steps:
first the replication factor is determined based on the weight
of a particle, followed by the actual replication of particles.
Equation 7 gives an expression to determine the replication
factor ri for a single weight !(i).

ri = b(!(i) � ui�1) ⇤Nc+ 1

ui = ui�1 +
ri

N

� !

(i)

for i = 1 . . . N and u0 ⇠ U(0, 1

N

) (7)

Figure 5 shows a graphical representation of RSR ex-
pressed in (7). Basically the replication factor is determined
by the amount of arrows in the range of a weight. The ran-
domization in resampling is implemented by the random off-
set u0 sampled from the uniform distribution (U ).

Fig. 5. Graphical representation of Residual Systematic Re-
sampling

When all replication factors ri have been found, the ac-
tual replication of particles can be performed. During repli-
cation, every particle x

(i)
k is replicated ri times and the re-

sulting sets are merged into a single set of new particles x̃(i)
k .

The mathematical formulation of replication using the con-
cat operator (k) is shown in (8).

{x̃(1)
k , x̃

(2)
k . . . x̃

(N)
k } =

N

k
n=1

replicate(x

(i)
k , ri) (8)

Since the replication of particles is highly dependent on
the replication factor ri, the fully parallel hardware imple-
mentation of resampling is expected to be the most expen-
sive component.

2.2. C�aSH

C�aSH [2] is a functional HDL, whose descriptions are trans-
lated to synthesizable VHDL by the C�aSH compiler. The
C�aSH language has many advanced features such as poly-
morphism, higher-order functions, pattern matching and type
derivation. Polymorphism and higher-order functions (func-
tions that have functions as argument or result) allow circuit
designers to describe parameterizable circuits in a natural
way.

C�aSH is a synchronous HDL where, on the lowest level,
everything is expressed as a Mealy machine i.e. every output
and new state is therefore a function of the current state and
input. Listing 1 shows an example of a discrete integrator
expressed in C�aSH.

Listing 1 Integrator example in C�aSH.

integrator (State s) inp = (State s

0
, out)

where
s

0
= s + inp

out = s

0

All hardware components described using C�aSH have
a structure as expressed in Listing 1. In order to distin-
guish between inputs for the component and data coming
from registers, a keyword State is used. Every variable pre-
ceded by State will be translated to a register by the C�aSH

compiler. In the integrator example of Listing 1, the first
occurrence of state s is the current state (the output of the
registers) while the second occurrence s

0 is the new state of
the register (the input). Note that, in Haskell, arguments are
generally written without brackets.

Even though types are very important in Haskell, we
chose not to display these in the listings as this paper is about
the structural correspondence between the mathematical for-
mulation and the resulting hardware.

Every C�aSH description is also a valid Haskell pro-
gram. This means that C�aSH descriptions can be simulated
using a Haskell compiler or interpreter such as GHC [11].
Although every C�aSH design is a valid Haskell program,
the reverse relation does not hold. Concepts such as recur-
sive function definitions and recursive datatypes are for ex-
ample supported in Haskell, but not (yet) in C�aSH.

3. DESIGN METHOD

The design method consists of two steps. First, the math-
ematical definition of particle filtering is reformulated to
Haskell, while trying to preserve the original semantics of
the equations. The second step is to perform minor changes
on the Haskell description such that C�aSH can be used for
translation to VHDL.

The following two sections describe how the two step
method is applied to the simple particle filter described in
[12].

3.1. Math to Haskell

To complete the mathematical specification as given in the
background section, a state space model f and a likelihood
function g still have to be defined. The application is a sim-
ple tracking particle filter for tracking a white square on a
dark background. Since tracking the square results in a PDF
representation of the position, each particle represents a pos-
sible position of the square. A single particle can be repre-
sented using a tuple with a position x, y and weight ! as
(x, y,!).

As a state space model, we use a uniform movement in
an area of 32 ⇥ 32 pixels (U(�16, 16)) resulting in the fol-
lowing expression for f .

f

⇣
x

(i)
k , uk

⌘
= x

(i)
k + uk

where uk = h�x, �yi ! �x, �y ⇠ U(�16, 16) (9)

Weight assignment is done by the likelihood function g

based only on the color of the pixel located at the position
x, y from a single particle. Particles positioned inside the
square should get a high weight while particles outside a low
weight. This is implemented by finding the color distance as
expressed in (10):

g

⇣
x

(i)
k , z

(i)
k

⌘
=

1

1 + (255� z

(i)
k [x, y])

2

where x, y 2 x

(i)
k (10)

Now that all necessary functions have been defined, the
mathematical definition of the prediction step expressed in
(9) can be translated to Haskell. The prediction step in Haskell
is generic i.e. the actual system dynamics function f is given
as argument. Listing 2 shows how to express the prediction
step in Haskell.

Listing 2 Prediction step in Haskell

predict f ps us = ps

0

where
ps

0
= zipWith f ps us

As can be seen in Listing 2, the prediction step accepts
a state space model function f , a set of particles ps and a
list of random offsets us. Every particle and every offset is
pairwise combined by f using zipWith.

The results of the prediction step are combined with a
measurement in the update step. Again, the update step for-
mulated in (3) is also generic by leaving the actual likelihood
function as argument. As formulated in (3), every particle is
combined with a single measurement to find the weight for
each particle. In Haskell, this is expressed using the higher
order function map (Listing 3):

Listing 3 Update step in Haskell

update g z ps = ps

0

where
ps

0
= map (g z ) ps

As can be seen in Listing 3, the update step accepts three
arguments: the likelihood function g, a measurement z and
a list of particles ps. In the body, the likelihood function g

is first assigned a measurement z after which it is applied to
all particles (mapped over) ps.

Also translating the normalization step from Equation 5
is performed in a similar way as can be seen in Listing 4.

As shown in Listing 4, the total weight tot! is deter-
mined by first selecting only the weights of all particles ps

using the weight function. The weight function is imple-
mented as weight(x, y,!) = !. All weights are then ac-
cumulated in tot!. In the last line, a lambda expression is

Listing 4 Normalization step in Haskell

normalize ps = ps

0

where
tot! = sum (map weight ps)

ps

0
= map (� (x , y ,!) ! (x , y ,! / tot!)) ps

applied (mapped) to all particles ps. The lambda expres-
sion accepts a particle and replaces only the weight by the
normalized weight.

The last step to formulate is the resampling step which
consists of two steps: first the replication factor is deter-
mined based on the weight of a particle, followed by the ac-
tual replication of particles. Equation 7 gives an expression
to determine the replication factor ri for weight !(i).

The length of the recursion in Equation 7 depends only
on the length of the weight list. We use a functional lan-
guage feature called pattern matching to terminate the re-
cursion. Listing 5 shows the two phases in the recursion.
Either, not all weights have not been processed yet (line 1),
or the last weight has been processed and an empty list [] is
left (line 2). During processing, the list of weights (! : !s)

shrinks every time by taking the first element ! and calcu-
lating a replication factor based on that element. Calculation
continues recursively with the remainder of the weights !s
until no weights are left [].

Listing 5 Haskell code to determine replication factors

ws2rfs u [ ] = [ ]

ws2rfs u (! : !s) = r : (ws2rfs u

0
!s)

where
r = floor ((! � u) ⇤N ) + 1

u

0
= u + r /N � !

Reformulating the replication of particles in Equation 7
to Haskell, comes down to translating the concat operator
(k) to the Haskell variant (++). Each particle p is replicated
ri times and all those sets of particles are merged using the
++ operator (Listing 6):

Listing 6 Replication of particles

replps [ ] [ ] = [ ]

replps (p : ps) (r : rs) = (replicate r p) ++ replps ps rs

Replication of particles is performed recursively, using
the replps function (Listing 6). This function accepts two

2 R. Wester et al. / Specification of APERTIF Polyphase Filter Bank in C�aSH

f (x , y ,!) (�
x

, �
y

) = (x 0, y 0,!)
where

x

0 = x + �
x

y

0 = y + �
y
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!̃(i)
=

!(i)

PN
n=1 !

(n)
for i = 1 . . . N

g

⇣
x

(i)
k , z

(i)
k

⌘
=

1

1 + (255� z

(i)
k [x, y])

2

where x, y 2 x

(i)
k (10)
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(9) can be translated to Haskell. The prediction step in Haskell
is generic i.e. the actual system dynamics function f is given
as argument. Listing 2 shows how to express the prediction
step in Haskell.

Listing 2 Prediction step in Haskell
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0

where
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As can be seen in Listing 2, the prediction step accepts
a state space model function f , a set of particles ps and a
list of random offsets us. Every particle and every offset is
pairwise combined by f using zipWith.

The results of the prediction step are combined with a
measurement in the update step. Again, the update step for-
mulated in (3) is also generic by leaving the actual likelihood
function as argument. As formulated in (3), every particle is
combined with a single measurement to find the weight for
each particle. In Haskell, this is expressed using the higher
order function map (Listing 3):
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0
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arguments: the likelihood function g, a measurement z and
a list of particles ps. In the body, the likelihood function g

is first assigned a measurement z after which it is applied to
all particles (mapped over) ps.

Also translating the normalization step from Equation 5
is performed in a similar way as can be seen in Listing 4.

As shown in Listing 4, the total weight tot! is deter-
mined by first selecting only the weights of all particles ps

using the weight function. The weight function is imple-
mented as weight(x, y,!) = !. All weights are then ac-
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normalize ps = ps

0

where
tot! = sum (map weight ps)

ps

0
= map (� (x , y ,!) ! (x , y ,! / tot!)) ps

applied (mapped) to all particles ps. The lambda expres-
sion accepts a particle and replaces only the weight by the
normalized weight.

The last step to formulate is the resampling step which
consists of two steps: first the replication factor is deter-
mined based on the weight of a particle, followed by the ac-
tual replication of particles. Equation 7 gives an expression
to determine the replication factor ri for weight !(i).

The length of the recursion in Equation 7 depends only
on the length of the weight list. We use a functional lan-
guage feature called pattern matching to terminate the re-
cursion. Listing 5 shows the two phases in the recursion.
Either, not all weights have not been processed yet (line 1),
or the last weight has been processed and an empty list [] is
left (line 2). During processing, the list of weights (! : !s)

shrinks every time by taking the first element ! and calcu-
lating a replication factor based on that element. Calculation
continues recursively with the remainder of the weights !s
until no weights are left [].

Listing 5 Haskell code to determine replication factors

ws2rfs u [ ] = [ ]

ws2rfs u (! : !s) = r : (ws2rfs u

0
!s)

where
r = floor ((! � u) ⇤N ) + 1

u

0
= u + r /N � !

Reformulating the replication of particles in Equation 7
to Haskell, comes down to translating the concat operator
(k) to the Haskell variant (++). Each particle p is replicated
ri times and all those sets of particles are merged using the
++ operator (Listing 6):

Listing 6 Replication of particles

replps [ ] [ ] = [ ]

replps (p : ps) (r : rs) = (replicate r p) ++ replps ps rs

Replication of particles is performed recursively, using
the replps function (Listing 6). This function accepts two
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where
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where
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Haskell to C𝝀aSH

✤ Translate lists to Vectors

✤ Use fixed point representation for weights

Normalize
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Results

✤ Parallel particle filter with 32 particles 
synthesized for FPGA

✤ Area = about 40k LUTs 

✤ PF can be synthesized but is slow

✤ Resampling step is bottleneck in both 
area and clockfrequency

✤ For larges PFs, we need a trade off 
between area and execution time

92%

Predict Update
Normalize Resample
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Conclusions

✤ A completely parallel Particle Filter has been implemented

✤ Higher order functions are a natural way to to reason about structure 
in both the mathematical formulation and hardware

✤ Haskell code needs only small modifications before it is accepted by 
the C𝝀aSH compiler 

✤ Fully parallel resampling is a bottleneck in both area and clock 
frequency
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Future Work

✤ Extend particle filter to more particles and more complex tracking

✤ Develop area vs time time trade off based on functional description
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Questions ?
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