Convey Vector Personalities —
FPGA Acceleration with an
OpenMP-like programming

effort?

Bjorn Meyer, Jorn Schumacher, Christian Plessl, Jens Forstner
University of Paderborn, Germany

PADERBORN

(‘ CENTER FOR

lL UNIVERSITAT PADERBORN PARALLEL
Die Universitdt der Informationsgesellschaft

COMPUTING

FPGA-accelerated Computing in Science

« motivation
— science increasingly depends numerical simulation
— many scientists are open for new HPC technologies

» research has shown high potential of FPGA acceleration
— high and predictable sustained performance
— ultimate control over computation and communication
— supports many kinds parallelism and customization

e challenges
— FPGAs are way too hard to program — even for many computer scientists

— synthesis, place and route, verification and debugging still is a world of
pain

Enabling Scientists to use FPGA Accelerators

current tool flows

— HDL-based

= not targeted a scientific users, way too cumbersome
* missing integration of platform and tools

— general high-level synthesis tools
» frequently not sufficiently automated, incomplete support of language

compiler directive approaches

— developer annotates code sections to be accelerated with #pragmas
— completely automated partitioning and tool flow
— successfully used for multi-cores (OpenMP) and GPUs (HMPP,PGI,...)

— recent standardization efforts (OpenACC)

Convey offers a directive-based FPGA acceleration solution
— goal of this paper: evaluate performance and usability
— compare with parallel implementation on multi-cores

Convey HC-1 Hybrid Core Computer

integrated FPGA accelerator
system for HPC

— 4 user-programmable application
FPGAs (Virtex-5 LX330)

— tightly coupled with host CPU
memory subsystem

I
Intel
Chipset <¢—p>| Host Memory M

— vector processing Y 3 = L I|J o Y i
DIMM Modules

— custom personality e

FSB
— cache coherent shared memory T S ettty
| Coprocessor |
between CPU and FPGAs : :
] ! \4 Application Engines !
— 80GB/s max. bandwidth for co- A - | P——— |
processor (8 independent memory ; -§% i Lo Selge|s2|5e |
banks) | &2 > |58|28|88)88) |
— Nno caches on co-processor i A |
firmware (personalities) for HPC | ¢ t |
. . . [Memory Controller !
application domains | T e B e B e Bl e B e W e W e M
— bioinformatics | |52| (g%l |&8| |&8| |B%| |B%| |B%| |B%||
: : | 55| |55| |55| |65| |85| |55| |&65| |85| | !
— computational finance ! ol Eol Bal 2al Bol B4l Eal =gl |
1 I | | | |
| I I !

Convey Vector Personality

« programmable vector processor implemented in FPGA

acceleration of scientific codes with SIMD parallelism
64 vector registers, 1024 elements per register

up to 1024-wide vector operations

basic mask support (loads and stores only)

variant for single and double precision arithmetic

« vectorizing compiler

supports C, C++ and Fortran

code to be executed on vector processer can be marked with directives
= host code translated to x86 instructions
= accelerator code translated to vector instructions
» transparent application partitioning, data transfers, synchronization

no custom hardware generation

Acceleration Directives

acceleration directives very similar to OpenACC or OpenMP

basic acceleration by wrapping code in begin_coproc/
end coproc #pragmas

additional pragmas for optimization
— optimization of data transfer
— guiding compiler optimization

#pragma cny migrate coproc(x, xByteSize);

#pragma cny migrate coproc(y, yByteSize);

#pragma cny begin coproc

unsigned long i ;

#pragma cny no loop dep (Y)

for (1 = 0; 1 < size; i++) {
ylil=axx[i]+y[i];

}

#pragma cny end coproc

example: SAXPY

Case Study: Computational Nanophotonics

. : microdisk cavity
e computational nanophotonics

— collaboration with theoretical

physicists
— study light field in vacuum
nanostructured materials L
— computationally expensive v

perfect metal

+ sourceW
* microdisk cavity in perfect

metallic environment result: energy density

— well studied nanophotonic -
device ..

— point-like time-dependent L
source (optical dipole)

96

— known analytic solution “
(whispering gallery modes) »

0

(hours to weeks per simulation)

F4 300

F4 250

0 32 64 96 128 160 192 224 256
x-direction

Finite Difference Time Domain Method (FDTD)

numerical method for solving
Maxwell's equations

. . . E:r [Z] = ca- Em [Z] +cb- (HZ[Z] _ Hz [Z _ dy]) (1)
iterative glgorlth_m, compL_Jtes Efil = ca Byfi] +cb(Hoi—de— B.[) @)
propagation of fields for fixed H.li] = da-H.li]+db- 3)
time step (Bl + dy] — Eu[i] + Ey[i] — Eyli + dx])
stencil computation on FDTD update equations

regular grid (for one time step)

— same operations for each grid
point
— fixed local data access pattern i+32

— simple arithmetic i+1 [J=
difficult to achieve high " ~ @H
performance 12

— hardly any data reuse i-1 time

— few operations per data Uz " ez ™ e

Evaluation of Vector Personalities and Toolflow

« compare 3 implementation of computational nanophotonics
case study
1. naive OpenMP-parallelized implementation for multi-core
2. optimized OpenMP-parallelized implementation for multi-core
3. Convey HC-1 vector personality

« metric: grid-point updates/s
« hardware platforms

Convey HC-1 Convey HC-1 Workstation

CPU Xeon 5138 Xeon L5408 Xeon E5620
Clock 2.13 GHz 2.13 GHz 2.4 GHz
Cores 2 4 2x4

Cache 4 MB 6 MB 2x12 MB
Memory 24 GB 64 GB 12 GB
DIMM type standard scatter-gather standard
Price ~50'000% ~50'000% ~5'000%

Naive OpenMP implementation

« direct implementation of FDTD iteration equations
* Dbasic cache optimizations

NUMA aware memory allocation (first touch policy)

always process same part of data with same core by using static OpenMP
scheduling

avoid cache line invalidation by using different arrays for reading and
writing (similar to double buffering)

E' [i] = f(E[i],H[i],H[i-dx]) instead of E[i]=f(E[i],H][i],H[i-dx])

10

OpenMP Implementation w/ Spatial Tiling (1)

 in addition to optimization from naive implementation...

* ... Use spatial tiling (cache blocking) to improve multi-core cache
performance

 tile x- and y-dimensions are open parameters

#pragma omp parallel for schedule(static) private(minusX, minusY, i)
collapse(2)

for (int yy = 1; yy < yDim-1; yy+=ty) {
for (int xx = 1; xxX < xDim - 1; xx+=tx) {

for (int y = yy; y < MIN(yy+ty,yDim - 1); y++) {
for (int x = xx; x < MIN(xx+tx,xDim - 1); x++) {
i = x + y*xDim;

minusX = i-1;

minusY = i-xDim;

ExNext[i] = ca * Ex[1] + cb * (Hz[i] - Hz[minusY]);
EyNext[i] = ca * Ey[i] + cb * (Hz[minusX] - Hz[i1]);

+}

11

OpenMP Implementation w/ Spatial Tiling (2)

« determine optimal tile size with auto-tuning

Tile size in y direction

158 1.8 1.44

1.57 1.79 1.85

1.61 1.83 1.9

16 1.8

1.03 1.31

1.08 1.35

1.3 1.47

1.1 1.42 1.55

1.07 1.46 1.72 1.77

1.18 1.61 1.78 1.82

1.21 1.65 1.8 1.85

0 ©

© A <
— N < o n © N 1O ~—
— N O

Tile size in x direction

speedup over naive implementation (2D double
precision, 4096x4096 grid)

12

Convey HC-1 Vector Personality Implementation

based on naive implementation (no tiling since no caches)
move loops that update electromagnetic fields to accelerator

optimizations
1. NUMA-aware data structure placement: co-processor can access its local
memory faster than the CPU memory
2. loop unrolling: unroll loops 16 times

3. remove needless memory barriers: co-processor uses a weakly ordered
memory model, compiler is too pessimistic, inserts superfluous barriers

4. rewrite inner loop to enable vectorization (manual masking operation)

for(i=0..N){ // vaccum[i] = 1 if i not in vaccum
if (is_in vacuum(i)){ // vaccum[i] = 0 if i in vaccum
H[i] = ...
} else { for(i=0..N){
H[i] = 0 H[i] =
} H[i] = H[i] * vaccum[i]

} }

conditional prevents vectorization can be vectorized

13

MStencils/s

1400 | ; I ! .
S Naive, 8 8ores —
- 256,4 patial tiling, 8 Cores
1200 4 (2564) Convey-HC1-Std-RAM %=+ -
Convey-HC1-SG-RAM-31-31 g
f Convey HC1-SG-RAM-Bin
1000 jt— ;’(’2’56"4’) ** S]
800

600

400

200 §f

0

2D Absolute Performance

00
Q\]
~—

| | | |
©O© < 0
n Al <t
Al o o
— Al

4096

working set size for grid size 512 *7512:7
(512*512) * 3 fields * 2 (double buffering) * 4 (double precision) = 6MB

14

Speedup

3.5

2.5

2D Relative Performance / Speedup

| | | | Naive, 8 Cores ——
B Spatial tiling, 8 Cores
Convey-HC1-Std-RAM -
Convey-HC1-SG-RAM-31-31 @
i i anvey-HC1 -SG-RAM-Bin -
I mmn
[— ,\ __ j
i "(”5'1"2"2"56')' """"""""""" ('2”56"'2')' """"""""""""""""""""""""" (2048,1024)
(256,128)
J """ N2564) S .
§* (256,4)
0 © Al <t (0 0] ({0
Al ~— QAl <t »
— Q\l Lo (@) (@) o
— N <

Grid Size

15

MStencils/s

3D Absolute Performance

500 ; , I :
Naive, 8 Cores —+—
‘ ; Spatial tiling, 8 Cores
Convey-HC1-Std-RAM -
400 e — Convey-HC1-SG-RAM-31-31 g
Convey-HC1-SG-RAM-Bin
300 / s "" .
I U ——— T T i
\256,1 6 64,/
200 ("""""""""")()3&
;’x.x644
e :
f=——(128,8)
O | l |
(o] Al < (0 0) O
— (4] (o) Al LO
~— (Q\|

Grid Size

working set size for grid size 64*64*64:
(64"64*64) * 6 fields * 2 (double buffering) * 4 (double precision) = 12MB ,¢

Speedup

3.5

2.5

1.5

3D Relative Performance / Speedup

! ! | Naive, 8 Cores ——
Spatial tiling, 8 Cores
I Convey-HC1-Std-RAM -----x---- 7]
Convey-HC1-SG-RAM-31-31 e
T e Clonvey-HC1 -SG-RAM-Bin -
““““““ SR =
.................... TN256,16) e I
W e
T iy
e e —(256.4)
644 o |
15—(128,8) . .
O Al < (0 0] (o]

Grid Size

17

Is it Worth it?

* productivity
— working implementation in minutes
— significant performance gain over single-core CPU

— performance benefit decreases when comparing against optimized,
parallel multi-core implementation

« obtaining good performance is difficult

— crippled mask support in vector processor hampers performance

— quality of the compiler (cnyCC) is unfortunately rather poor
= poor optimizations

= very dependent on specific form of code

— meanwhile Convey has released a new compiler (external vectorizer),
which is — at least in our setup — unusable

18

Is it Work it? (2)

e economics

— for our case study the HC-1 vector personality was the fastest
implementation
= 2D: HC-1 outperforms SMP multi-core by 40%
= 3D: HC-1 outperforms SMP multi-core by 17%

— development effort comparable to OpenMP solution
— difference in price of HC-1 and SMP system ~10x

19

Conclusions & Outlook

directive-based acceleration has many benefits from a usability
perspective
— Convey has shown that such a tool flow is generally possible

— stencil computations run about 20-40% faster than on multi-core SMPs,
tough economically this use case is questionable

implementing a generic processor may not be the best use of
FPGA resources

— doesn't exploit customization potential
— low average utilization

open question: can we generate optimized processors from
application that are augmented with compiler directives
— continuum between fixed function and completely application specific

20

Questions

Questions & Feedback

Christian Plessl

University of Paderborn

Paderborn Center for Parallel Computing
christian.plessl@uni-paderborn.de

21

