
Convey Vector Personalities –
FPGA Acceleration with an
OpenMP-like programming

effort?
Björn Meyer, Jörn Schumacher, Christian Plessl, Jens Förstner

University of Paderborn, Germany

! " # $ % & ' ()

! * (& * + , - " +

$. + . / / * /

$. 0 * + 1 " + (

FPGA-accelerated Computing in Science

•  motivation
–  science increasingly depends numerical simulation
–  many scientists are open for new HPC technologies

•  research has shown high potential of FPGA acceleration
–  high and predictable sustained performance
–  ultimate control over computation and communication
–  supports many kinds parallelism and customization

•  challenges
–  FPGAs are way too hard to program – even for many computer scientists
–  synthesis, place and route, verification and debugging still is a world of

pain

2

Enabling Scientists to use FPGA Accelerators

•  current tool flows
–  HDL-based

§  not targeted a scientific users, way too cumbersome
§  missing integration of platform and tools

–  general high-level synthesis tools
§  frequently not sufficiently automated, incomplete support of language

•  compiler directive approaches
–  developer annotates code sections to be accelerated with #pragmas
–  completely automated partitioning and tool flow
–  successfully used for multi-cores (OpenMP) and GPUs (HMPP,PGI,...)
–  recent standardization efforts (OpenACC)

•  Convey offers a directive-based FPGA acceleration solution
–  goal of this paper: evaluate performance and usability
–  compare with parallel implementation on multi-cores

3

Convey HC-1 Hybrid Core Computer

•  integrated FPGA accelerator
system for HPC

–  4 user-programmable application
FPGAs (Virtex-5 LX330)

–  tightly coupled with host CPU

•  memory subsystem
–  cache coherent shared memory

between CPU and FPGAs
–  80GB/s max. bandwidth for co-

processor (8 independent memory
banks)

–  no caches on co-processor

•  firmware (personalities) for HPC
application domains

–  bioinformatics
–  computational finance
–  vector processing
–  custom personality

4

FSB

Coprocessor

Intel
Chipset

Intel
Xeon
CPU

Host Memory

M
em

or
y

C
on

tro
lle

r 0

Memory Controller

M
em

or
y

C
on

tro
lle

r 1

M
em

or
y

C
on

tro
lle

r 2

M
em

or
y

C
on

tro
lle

r 3

M
em

or
y

C
on

tro
lle

r 4

M
em

or
y

C
on

tro
lle

r 5

M
em

or
y

C
on

tro
lle

r 6

M
em

or
y

C
on

tro
lle

r 7

DIMM Modules

Scalar
ProcessorA

pp
lic

at
io

n
En

gi
ne

 H
U

B

Host
Interface

Management
Processor

Ap
pl

ic
at

io
n

En
gi

ne
 0

Ap
pl

ic
at

io
n

En
gi

ne
 1

Ap
pl

ic
at

io
n

En
gi

ne
 2

Ap
pl

ic
at

io
n

En
gi

ne
 3

Application Engines

Convey Vector Personality

•  programmable vector processor implemented in FPGA
–  acceleration of scientific codes with SIMD parallelism
–  64 vector registers, 1024 elements per register
–  up to 1024-wide vector operations
–  basic mask support (loads and stores only)
–  variant for single and double precision arithmetic

•  vectorizing compiler
–  supports C, C++ and Fortran
–  code to be executed on vector processer can be marked with directives

§  host code translated to x86 instructions
§  accelerator code translated to vector instructions
§  transparent application partitioning, data transfers, synchronization

–  no custom hardware generation

5

Acceleration Directives

•  acceleration directives very similar to OpenACC or OpenMP
•  basic acceleration by wrapping code in begin_coproc/

end_coproc #pragmas!
•  additional pragmas for optimization

–  optimization of data transfer
–  guiding compiler optimization

6

#pragma cny migrate_coproc(x, xByteSize);!
#pragma cny migrate_coproc(y, yByteSize);!
#pragma cny begin_coproc !
unsigned long i ;!
#pragma cny no_loop_dep (y) !
for (i = 0; i < size; i++) {!
 y[i]=a∗x[i]+y[i]; !
}  
#pragma cny end_coproc !
!example: SAXPY

Case Study: Computational Nanophotonics

7

 0 32 64 96 128 160 192 224 256

x-direction

 0

 32

 64

 96

 128

 160

 192

 224

 256

y-
d
ir
e
ct

io
n

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

vacuum

perfect metal

microdisk cavity

source

•  computational nanophotonics
–  collaboration with theoretical

physicists
–  study light field in

nanostructured materials
–  computationally expensive

(hours to weeks per simulation)

•  microdisk cavity in perfect
metallic environment
–  well studied nanophotonic

device
–  point-like time-dependent

source (optical dipole)
–  known analytic solution

(whispering gallery modes)

result: energy density

Finite Difference Time Domain Method (FDTD)

•  numerical method for solving
Maxwell's equations

•  iterative algorithm, computes
propagation of fields for fixed
time step

•  stencil computation on
regular grid
–  same operations for each grid

point
–  fixed local data access pattern
–  simple arithmetic

•  difficult to achieve high
performance
–  hardly any data reuse
–  few operations per data

8

 0 32 64 96 128 160 192 224 256
x-direction

 0

 32

 64

 96

 128

 160

 192

 224

 256

y-
di

re
ct

io
n

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Figure 2: Time-integrated energy density for a microdisk
cavity in a perfect metallic environment

to be updated. Our code generator maps this kind of material
compositions by sampling the physical dimensions with a
user defined sampling factor to a grid and creates arrays
(E

x

, E
y

,H
z

) on the GPU with 3D grid size dimensions
and assigning scalar update coefficients (ca, cb, da, db) to
the grid. The FDTD algorithms can be expressed using the
following set of update equations (for the considered disk
example):

E
x

[i] = ca · E
x

[i] + cb · (H
z

[i]�H
z

[i� dy]) (1)
E

y

[i] = ca · E
y

[i] + cb · (H
z

[i� dx]�H
z

[i]) (2)
H

z

[i] = da · H
z

[i] + db · (3)
·(E

x

[i + dy]� E
x

[i] + E
y

[i]� E
y

[i + dx])

Here, i±dx and i±dy denote neighbors of the grid cell with
index i in x and y direction. Because the stencils operate on
nearest neighbors, we define an update grid region, which
guarantees, that all points can be updated, which ensures
that all accessed nearest neighbors outside the update region
exists. This implies that we do not need to handle border
elements differently from elements inside the update region,
which is an advantage for the considered target hardware
architectures.

To inject non-zero fields into our simulation, we extend
our PDE with a point-like time-dependent inhomogeneity
which physically represents an optical dipole point source.
Depending on the selected maximal simulation time and the
duration of one time step, we get the number of iterations of
our simulation loop. In each iteration of that loop, the E and
H fields are computed based on previous values in separate
substeps, the point source amplitude is added at one grid
point and the time-integrated energy density is computed to
extract the excited mode from the simulation (an example
result is given in Figure 2): H

zsum

[i]+ = H
z

[i]2. We want
to emphasize that the set of update equations can be easily
extended, e.g., to model other material types like Lorentz
oscillators or to perform further analysis on the computed
data.

IV. RESULTS

For evaluation of our approach, we implemented a refer-
ence CPU implementation based on OpenMP using up to
8 cores (Nehalem-microarchitecture) and compared it with
the performance of code generated for the GPU system
(Tesla Fermi) for a range of problem sizes and optimization
parameters. Our MPI-CUDA code was evaluated with two
nodes, connected over ethernet.
As explained above we developed three different code trans-
formation methods to represent the subdomains on which
stencils operate. All choices are analyzed with respect to
their performance for a range of problem sizes, and for single
precision and double precision.

1) The first composition mapping method, No mask, uses
one or more functions to model the geometry of a
setup. This approach imposes additional mathematical
operations to select the appropriate stencil operation
for each point in the grid, but allows to represent
geometries in a compact form and therefore save GPU
memory and bandwidth.
Because threads in a CUDA capable Fermi device
are scheduled in warps (a bunch of 32 threads), it
is recommended that all threads in a warp follow
the same execution path to prevent a performance
penalty caused by serialization. Hence, depending on
the problem geometry, the No mask mapping may
come along with a performance decrease.

2) The second mapping technique is accomplished by
using a Mask, which is essentially a lookup table
containing the numbers 0 or 1 for each grid point.
This number is multiplied by the arithmetic update-
expression and therefore determins if a grid value
is changed or not, hence for 1 (inside subdomian)
the stencil operation is applied, while for the value
0 (outside subdomain) the value of the grid cell
is not changed. Compared to the previous mapping
option, we get a performance increase of up to 420
million stencil operations per second. The overhead of
this technique is given by a float multiplication with
the mask introduced to the stencil equation and the
additional GPU memory capacity and bandwidth con-
sumption for the mask, however no branch divergence
occurs.

3) For small grid sizes (less than 5122), our third transfor-
mation technique Mask using if performs nearly equal
to the Mask method. Here, a boolean lookup table
is used, and a "if" statement determines whether a
stencil operation should be applied to the grid cell. For
grid sizes greater than 40962, in comparison to Mask
a constant performance increase of about 70 million
stencil operations per second for single precision is
achieved despite the additional branch divergence that
can occur. This result is slightly unexpected and can

FDTD update equations
(for one time step)

Evaluation of Vector Personalities and Toolflow

•  compare 3 implementation of computational nanophotonics
case study
1.  naive OpenMP-parallelized implementation for multi-core
2.  optimized OpenMP-parallelized implementation for multi-core
3.  Convey HC-1 vector personality

•  metric: grid-point updates/s
•  hardware platforms

9

Convey HC-1 Convey HC-1 Workstation
CPU Xeon 5138 Xeon L5408 Xeon E5620
Clock 2.13 GHz 2.13 GHz 2.4 GHz
Cores 2 4 2 x 4
Cache 4 MB 6 MB 2 x 12 MB
Memory 24 GB 64 GB 12 GB
DIMM type standard scatter-gather standard
Price ~50'000$ ~50'000$ ~5'000$

Naive OpenMP implementation

•  direct implementation of FDTD iteration equations
•  basic cache optimizations

–  NUMA aware memory allocation (first touch policy)
–  always process same part of data with same core by using static OpenMP

scheduling
–  avoid cache line invalidation by using different arrays for reading and

writing (similar to double buffering)

 E' [i] = f(E[i],H[i],H[i-dx]) instead of E[i]=f(E[i],H[i],H[i-dx])

10

OpenMP Implementation w/ Spatial Tiling (1)

•  in addition to optimization from naive implementation...
•  ... use spatial tiling (cache blocking) to improve multi-core cache

performance
•  tile x- and y-dimensions are open parameters

11

#pragma omp parallel for schedule(static) private(minusX, minusY, i)
collapse(2)!
!
for (int yy = 1; yy < yDim-1; yy+=ty) {!
 for (int xx = 1; xx < xDim - 1; xx+=tx) {!
!
 for (int y = yy; y < MIN(yy+ty,yDim - 1); y++) {!
 for (int x = xx; x < MIN(xx+tx,xDim - 1); x++) {!
 i = x + y*xDim;!
 minusX = i-1;!
 minusY = i-xDim;!
 ExNext[i] = ca * Ex[i] + cb * (Hz[i] - Hz[minusY]);!
 EyNext[i] = ca * Ey[i] + cb * (Hz[minusX] - Hz[i]);!
 }!
 }!
}}!

OpenMP Implementation w/ Spatial Tiling (2)

•  determine optimal tile size with auto-tuning

12

1 2 4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

Tile size in x direction

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

T
ile

 s
iz

e
 in

 y
 d

ir
e
ct

io
n

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1.21 1.65 1.8 1.85 1.87 1.88 1.87 1.89 1.87 1.89 1.89 1.89 1.88

1.18 1.61 1.78 1.82 1.84 1.85 1.86 1.86 1.86 1.86 1.87 1.87 1.89

1.07 1.46 1.72 1.77 1.67 1.73 1.77 1.83 1.86 1.87 1.87 1.88 1.89

0.82 1.1 1.42 1.55 1.62 1.65 1.66 1.81 1.87 1.88 1.88 1.88 1.89

0.69 0.95 1.3 1.47 1.57 1.62 1.65 1.82 1.86 1.87 1.88 1.89 1.89

0.61 0.85 1.08 1.35 1.51 1.6 1.63 1.79 1.83 1.86 1.87 1.87 1.89

0.56 0.79 1.03 1.31 1.48 1.58 1.63 1.78 1.82 1.86 1.85 1.87 1.89

0.38 0.66 0.92 1.22 1.39 1.52 1.6 1.73 1.76 1.81 1.84 1.87 1.89

0.33 0.61 0.86 0.99 1.26 1.36 1.48 1.59 1.64 1.79 1.85 1.87 1.89

0.27 0.43 0.51 0.73 1.08 1.28 1.43 1.48 1.6 1.8 1.86 1.87 1.89

0.2 0.31 0.42 0.66 1.0 1.23 1.43 1.47 1.61 1.83 1.9 1.94 1.48

0.18 0.28 0.4 0.63 0.95 1.17 1.37 1.42 1.57 1.79 1.85 1.45 0.76

0.18 0.28 0.4 0.62 0.94 1.15 1.37 1.42 1.58 1.8 1.44 0.77 0.48

speedup over naive implementation (2D double
precision, 4096x4096 grid)

Convey HC-1 Vector Personality Implementation

•  based on naive implementation (no tiling since no caches)
•  move loops that update electromagnetic fields to accelerator
•  optimizations

1.  NUMA-aware data structure placement: co-processor can access its local
memory faster than the CPU memory

2.  loop unrolling: unroll loops 16 times
3.  remove needless memory barriers: co-processor uses a weakly ordered

memory model, compiler is too pessimistic, inserts superfluous barriers
4.  rewrite inner loop to enable vectorization (manual masking operation)

13

for(i=0..N){!
 if (is_in_vacuum(i)){!
 H[i] = ...!
 } else {!
 H[i] = 0!
 }!
}!

// vaccum[i] = 1 if i not in vaccum!
// vaccum[i] = 0 if i in vaccum!
!
for(i=0..N){!
 H[i] = ...!
 H[i] = H[i] * vaccum[i] !
}!

conditional prevents vectorization can be vectorized

2D Absolute Performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

M
S

te
n
ci

ls
/s

Grid Size

Naive, 8 Cores
Spatial tiling, 8 Cores

Convey-HC1-Std-RAM
Convey-HC1-SG-RAM-31-31

Convey-HC1-SG-RAM-Bin
(256,4)

(256,4)

(256,128)

(512,256) (256,2) (2048,1024)

14

working set size for grid size 512 * 512:
 (512*512) * 3 fields * 2 (double buffering) * 4 (double precision) = 6MB

2D Relative Performance / Speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

S
p
e
e
d
u
p

Grid Size

Naive, 8 Cores
Spatial tiling, 8 Cores

Convey-HC1-Std-RAM
Convey-HC1-SG-RAM-31-31

Convey-HC1-SG-RAM-Bin

(256,4)
(256,4)
(256,128)

(512,256) (256,2) (2048,1024)

15

3D Absolute Performance

 0

 100

 200

 300

 400

 500

1
6

3
2

6
4

1
2

8

2
5

6

M
S

te
n

ci
ls

/s

Grid Size

Naive, 8 Cores
Spatial tiling, 8 Cores

Convey-HC1-Std-RAM
Convey-HC1-SG-RAM-31-31

Convey-HC1-SG-RAM-Bin

(128,8)

(64,4)

(256,4) (256,16) (64,1)

16

working set size for grid size 64*64*64:
 (64*64*64) * 6 fields * 2 (double buffering) * 4 (double precision) = 12MB

3D Relative Performance / Speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1
6

3
2

6
4

1
2
8

2
5
6

S
p
e
e
d
u
p

Grid Size

Naive, 8 Cores
Spatial tiling, 8 Cores

Convey-HC1-Std-RAM
Convey-HC1-SG-RAM-31-31

Convey-HC1-SG-RAM-Bin

(128,8)
(64,4)

(256,4)

(256,16)

(64,1)

17

Is it Worth it?

•  productivity
–  working implementation in minutes
–  significant performance gain over single-core CPU
–  performance benefit decreases when comparing against optimized,

parallel multi-core implementation

•  obtaining good performance is difficult
–  crippled mask support in vector processor hampers performance
–  quality of the compiler (cnyCC) is unfortunately rather poor

§  poor optimizations
§  very dependent on specific form of code

–  meanwhile Convey has released a new compiler (external vectorizer),
which is – at least in our setup – unusable

18

Is it Work it? (2)

•  economics
–  for our case study the HC-1 vector personality was the fastest

implementation
§  2D: HC-1 outperforms SMP multi-core by 40%
§  3D: HC-1 outperforms SMP multi-core by 17%

–  development effort comparable to OpenMP solution
–  difference in price of HC-1 and SMP system ~10x

19

Conclusions & Outlook

•  directive-based acceleration has many benefits from a usability
perspective
–  Convey has shown that such a tool flow is generally possible
–  stencil computations run about 20-40% faster than on multi-core SMPs,

tough economically this use case is questionable

•  implementing a generic processor may not be the best use of
FPGA resources
–  doesn't exploit customization potential
–  low average utilization

•  open question: can we generate optimized processors from
application that are augmented with compiler directives
–  continuum between fixed function and completely application specific

20

Questions

Questions & Feedback

Christian Plessl
University of Paderborn
Paderborn Center for Parallel Computing
christian.plessl@uni-paderborn.de

21

