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Introduction

* The emergence of SoCs with tightly coupled FPGA fabric and high-
nerformance multicore CPUs encourages a new way of building FPGA-
based systems
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We use 1-cycle cache reloads to demonstrate the impact of conflict misses

Processing elements
automatically generated
from Python kernel

® How do we unlock performance across a broad spectrum of
hardware platforms...without manually coding implementations

Address, data, request type
and tag signals .
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