Automatic Generation of Application-Specitic Accelerators for FPGAs from Python Loop Nests

David Sheffield, Michael Anderson, Kurt Keutzer
{dsheffie,mjanders, keutzer} @eecs.berkeley.edu

Introduction

* The emergence of SoCs with tightly coupled FPGA fabric and high-
nerformance multicore CPUs encourages a new way of building FPGA-
based systems

Compiler Construction FPGA Evaluation and Results

foriinrange(o,3006):

for min range(o,16):

for fin range(o,39):
LogProb[i][m] += (In[f] — Mean[i][f][m]) *

Python AST
Gaussian mixture model

_ . . We evaluated our system evaluation: (In[f] — Mean[iJ[f][m})*
* FPGA+multiprocessor SoC allows the acceleration of select kernels on using the following Var[ilifilmy;

the FPGA fabric that closely match the capabilities of the fabric Modified Copperhead AST (Strongly typed, restricted subset, added forloops) Python kernels e T
* Parts of the program that can not be easily accelerated in the FPGA Procedure(Name(gaussan_eliminaion’, [Name(A), Name(), Name() . We used our system to Color comversion: f?grij??nrfzggeég):

fabric can be run with reasonable efficiency on the multiprocessors B otscrr(Normotacalery. TP (Hametrange), fHumber(o) Number(27D: generate both C and pOUt[pI[i] += pln{plliT*mat[[
* The FPGA+multiprocessor SoC motivates a selective and embedded . . N |

. . . l FPGA implementations Vector add: S Creleey:
to design: the programmer selects only certain computations for ector add: C{il = ATl + B,
: : : Serandanes Rl Parallelism-exposing of each kernel
acceleration. These computations are embedded as a subset of a high- et front-end for i in range(o,2024):

forjinrange(o, 1024):
for kinrange(o, 1024):

c[i1j] += alillk] *blk][j]

level language. - v

Loop transformations:
 Distribution
* Interchange

Our approach N Y

4/‘\)

Matrix multiply:

* We present Three Fingered Jack to productively explore application G+ generation LLVM IR generation >etup
_ _ _ » SSE/Neon intrinsics * LLVM applies traditional OpenCL generation e We evaluated our system on a Xilinx Virtex-6 LX240 * We compared the multiprocessors generated by our
exploration on emerging FPGA+multiprocessor SoCs + OpeniiE pragmas complier opfimizaions * Synopsys Synplify Premier / ISE place and route system to an optimized soft-core processor
° Three Fingeredjack iS a Vectorizing Compiler and high_level Synthesis . Our Python high-level synthesis is built on . Scalar (ﬁve-stage pipeline) of the Berkeley RISC-V ISA
t bedded in the Pvth | TS e — S‘;nthesisﬂow OpenCchomp"er Python 2.7 and LLVM 2.9 * Ckernels compiled with GCC 4.4.0 with all optimizations
SYsteém embedded In the Fython language. [J [J [J Dependence testing and LLVM to RTL engines enabled
* Inoursystem, the programmer selects dense loop nests in Python Platform-specific written for this project + Automatically generated PEs run at 91 MHz
using the decorator syntax to redirect the Python run-time to our back-ends * Memoryrunsat 400 MHz
Compller f LLVM optimization passes) Hardware-generation
* Asour compileris restricted to dense loop nests, we can apply effective Pointer alias analysis back-end Do o
. . . . - . . » Collect loop information
vectorizing compiler algorithms and traditional high-level synthesis - 7 - esign statistics
. . . . 4)
techniques to automatically generate parallel processing engines nsantte unctona s TVADD T EE T Vi TGN —
. - : s | DSP48s | BRAMs | Max Freq
* Our approach has productivity, portability, and efficiency benefits. . J IPE | 3989 | 4057 | 5342 | 5666
! ' p \ 5570 3 5 91 MHz
e . . Soheduls 2PEs | 4219 | 4772 | 7452 | 8178 .
1. Portability is guaranteed as all code remains valid Python e e TPE T 1568 152474 T 9590 | 10657 Soft-core statistics
2. Efficiency is demonstrated by 3 to 6x performance improvements 5 e S e) 4PEs | 4879 | 6115 | 11641 | 13538
- 5PEs | 5135 | 6824 | 13670 | 15758
over an optimized soft-core processor . v i ; VVADD | CC | MM | GMM
. Allocate registers . OPEs | 4832 | 7560 | 15554 | 17967 Max Freq (MHz) | 165 | 160 | 166 | 169
3. We demonstrate productivity as our benchmark kernels are all less * Lt et szl 7PEs | 5134 | 8414 | 18022 | 20743 DSP48s por PE 5 3 3 3
]]] k)
than 10 lines of Python. We believe high-performance manual RTL , SPEs | Sd414 | 9134 | 19922 | 22743
- : Automatically-generated solution frequenc
implementations would be at least 20x more code [Emit Verilog J Automatically-generated solution LUT e
statistics
C : | A | : d T f : M : h : | | Performance results
ompiler Analysis and Transformations icro-architectural template . \deal memory: global memory accesses require a single cycl

* Cached results: main memory (DRAM) backed by 16kB direct-mapped write-back cache with 128-byte cache
lines

We use 1-cycle cache reloads to demonstrate the impact of conflict misses

Processing elements
automatically generated
from Python kernel

® How do we unlock performance across a broad spectrum of
hardware platforms...without manually coding implementations

Address, data, request type
and tag signals .

= \ * We use 11-cycle (PE clocks) cache reloads to demonstrate the impact of DRAM latency. 11-cycle reload due to
for each platform? e;/ S \Z_> _ 44-cycle DRAM reload (DRAM operates 400 MHz).
. . Téu B [] S o erformance with |deal Memor erformance with 1-Cycle Writeback Cache erformance wi -Cycle Writeback Cache
= Reordering transformations! S ¥ O S t g Go O JRN i A P)
. . _g % E _9 8 < 8 7 + Color ngv(grsion @ B - . % 7 + Color Cgr?vc:-:‘rrsion @ . 5 7 + Color Cgﬁvct)errsion @
® By changing the order of execution, we can better map 58 5 250 Sel omeMo G FP R G4V = _ FP I A =
s || e R 0] 2 N ks 8
. . g Q O C—NU 5 | X B] ; X _ % 5 . C_NU 5
computations to the underlying hardware 5 i;\ E N jz g < il Nl N _ N 7
7 g 3f >§_X_><__ s of i g st 7
U N T Barrier synchronization \ g 2f SINe: E 72 *3 B Y g 2t 1 & 2p .
for(i=o;i<n;i++) for(k=0;k<n;k++) for(i=o;i<n;i++) within Cluster data and address o L BV Y @Y Y R o | i o |
for(j=0;j<n;j++) for(i=o;i<n;i++) for(k=0;k<n;k++) cluster Mmux & B % B Y BT R S s & 8 B : :
for(k=0;k<n;k++) for(j=0;j<n;j++) for(j=0;j<n;j++) ° TRiscv 4 5 6 7 8 ° TRiscv 1 °TRsov 1 2 4 5 6 7 8
Y[l][J] += A[I][k]*B[k][J] Y[I][J] += A[l][k]*B[k][J] Y[l][J] += A[l][k]*B[k][J] Number of Processing Elements (PEs) Number of Processing Elements (PEs)
Nesting A Nesting B Nesting C Micro-architectural for i range(0,3006) * Matrix-multiply, color-conversion, and vector-add are very scalable with single-cycle global memory accesses.
-~ L _ : e i ringel0.39) _ DRAM bandwidth limits all GMM implementations
For example, code vectorization is enabled by moving a mapping example piAivitmcdise b e With both 1-cycle and 11-cycle cache reloads, we obtain maximum performance with 7 PEs due to cache conflicts
. (In[f] = Mean[i][f][m])* . . .
dependence-free loop to the inner most loop-nest vt and limited memory bandwidth
_ Y gurerwwwrann B * We achieve slightly less than 5x soft-core performance on the color-conversion kernel with 1-cycle reloads. The
" We use Banerjee's test to construct our dependence graph o o et other kernels scale from 2x to 3x soft-core performance
L] , : : : S g el — * With 11-cycle reloads, we achieve greater than 5x soft-core performance with color-conversion kernel. The other
Allen’s codegen algorithm is at the heart of our compiler : S kernels scale from 1x to 4x soft-core performance
- Aggressive optimizations: We perform |oop distribution |oop s 55 gt « ALUT-efficient design built using our system would use less than 8 PEs. Adding private per PE caches would also
! I P e I improve performance significantly

interchange, and loop unrolling right now

