

Automatic Generation of Application-Specific Accelerators for FPGAs from Python Loop Nests

David Sheffield, Michael Anderson, Kurt Keutzer {dsheffie,mjanders,keutzer}@eecs.berkeley.edu

Introduction

- The emergence of SoCs with tightly coupled FPGA fabric and highperformance multicore CPUs encourages a new way of building FPGAbased systems
- FPGA+multiprocessor SoC allows the acceleration of select kernels on the FPGA fabric that closely match the capabilities of the fabric
- Parts of the program that can not be easily accelerated in the FPGA fabric can be run with reasonable efficiency on the multiprocessors
- The FPGA+multiprocessor SoC motivates a selective and embedded to design: the programmer **selects** only certain computations for acceleration. These computations are **embedded** as a subset of a high-level language.

Our approach

- We present Three Fingered Jack to productively explore application exploration on emerging FPGA+multiprocessor SoCs
- Three Fingered Jack is a vectorizing compiler and high-level synthesis system embedded in the Python language.
- In our system, the programmer selects dense loop nests in Python using the decorator syntax to redirect the Python run-time to our compiler
- As our compiler is restricted to dense loop nests, we can apply effective vectorizing compiler algorithms and traditional high-level synthesis techniques to automatically generate parallel processing engines
- Our approach has productivity, portability, and efficiency benefits.
- 1. Portability is guaranteed as all code remains valid Python
- 2. Efficiency is demonstrated by 3 to 6x performance improvements over an optimized soft-core processor
- 3. We demonstrate productivity as our benchmark kernels are all less than 10 lines of Python. We believe high-performance manual RTL implementations would be at least 20x more code

Compiler Construction

Compiler Analysis and Transformations

- How do we unlock performance across a broad spectrum of hardware platforms...without manually coding implementations for each platform?
- Reordering transformations!
- By changing the order of execution, we can better map computations to the underlying hardware

- For example, code vectorization is enabled by moving a dependence-free loop to the inner most loop-nest
- We use Banerjee's test to construct our dependence graph
- Allen's codegen algorithm is at the heart of our compiler
- Aggressive optimizations: We perform loop distribution, loop interchange, and loop unrolling right now

FPGA Evaluation and Results

We evaluated our system using the following Python kernels

 We used our system to generate both C and FPGA implementations of each kernel

Setup

- We evaluated our system on a Xilinx Virtex-6 LX240
- Synopsys Synplify Premier / ISE place and route
- Our Python high-level synthesis is built on Python 2.7 and LLVM 2.9
- Dependence testing and LLVM to RTL engines written for this project
- We compared the multiprocessors generated by our system to an optimized soft-core processor
- Scalar (five-stage pipeline) of the Berkeley RISC-V ISA
- C kernels compiled with GCC 4.4.0 with all optimizations enabled
- Automatically generated PEs run at 91 MHz
- Memory runs at 400 MHz

Design statistics

	VVADD	CC	MM	GMM
1 PE	3989	4057	5342	5666
2 PEs	4219	4772	7452	8178
3 PEs	4568	5474	9592	10657
4 PEs	4879	6115	11641	13538
5 PEs	5135	6824	13670	15758
6 PEs	4832	7560	15554	17967
7 PEs	5134	8414	18022	20743
8 PEs	5414	9134	19522	22743

Automatically-generated solution LUT statistics

LUTs	DSP48s	BRAMs	Max Freq				
5570	3	5	91 MHz				
Soft-core statistics							

	VVADD	CC	MM	GMM
Max Freq (MHz)	165	160	166	169
DSP48s per PE	0	3	3	3

Automatically-generated solution frequency statistics

Micro-architectural template

Micro-architectural mapping example

Performance results

- Ideal memory: global memory accesses require a single cycle
- Cached results: main memory (DRAM) backed by 16kB direct-mapped write-back cache with 128-byte cache lines
- We use 1-cycle cache reloads to demonstrate the impact of conflict misses
- We use 11-cycle (PE clocks) cache reloads to demonstrate the impact of DRAM latency. 11-cycle reload due to 44-cycle DRAM reload (DRAM operates 400 MHz).

- Matrix-multiply, color-conversion, and vector-add are very scalable with single-cycle global memory accesses. DRAM bandwidth limits all GMM implementations
- With both 1-cycle and 11-cycle cache reloads, we obtain maximum performance with 7 PEs due to cache conflicts and limited memory bandwidth
- We achieve slightly less than 5x soft-core performance on the color-conversion kernel with 1-cycle reloads. The other kernels scale from 2x to 3x soft-core performance
- With 11-cycle reloads, we achieve greater than 5x soft-core performance with color-conversion kernel. The other kernels scale from 1x to 4x soft-core performance
- A LUT-efficient design built using our system would use less than 8 PEs. Adding private per PE caches would also improve performance significantly